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 Econometric Theory, 11, 1995, 122-150. Printed in the United States of America.

 MULTIVARIATE SIMULTANEOUS

 GENERALIZED ARCH

 ROBERT F. ENGLE
 University of California, San Diego

 KENNETH F. KRONER
 University of Arizona

 This paper presents theoretical results on the formulation and estimation of

 multivariate generalized ARCH models within simultaneous equations systems.

 A new parameterization of the multivariate ARCH process is proposed, and

 equivalence relations are discussed for the various ARCH parameterizations.

 Constraints sufficient to guarantee the positive definiteness of the conditional

 covariance matrices are developed, and necessary and sufficient conditions

 for covariance stationarity are presented. Identification and maximum likeli-

 hood estimation of the parameters in the simultaneous equations context are

 also covered.

 1. INTRODUCTION

 Although economists have long been interested in the analysis of behavior

 under uncertainty, econometricians have only recently begun developing an

 analytical framework to deal with uncertainty. A central feature of this

 framework is the modeling of second and possibly higher moments, as well.

 One of the most prominent tools used to model the second moments is due

 to Engle (1982). Engle (1982) suggested that these unobservable second

 moments could be modeled by specifying a functional form for the condi-
 tional variance and modeling the first and second moments jointly, giving

 what is called in the literature the Autoregressive Conditional Heteroskedas-

 ticity (ARCH) model. Of course, many different functional forms are pos-

 sible, but Engle's (1982) suggestion that the conditional variances depend on
 elements in the information set in an autoregressive manner has become per-

 haps the most common. This linear ARCH model was generalized by Boller-
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 MULTIVARIATE SIMULTANEOUS GENERALIZED ARCH 123

 slev (1986) in a manner analogous to the extension from AR to ARMA

 models in traditional times series by allowing past conditional variances to

 appear in the current conditional variance equation. The resulting model is
 called Generalized ARCH, or GARCH. These models have been applied

 extensively in the literature (see, e.g., the survey by Bollerslev, Chou, and
 Kroner, 1992).

 Further extensions to multivariate models, which are usually analogous to

 the extension from ARMA to vector ARMA models, appear often in the Iit-

 erature, though usually without theoretical discussion (see, e.g., Bollerslev,
 Engle, and Wooldridge, 1988; Engel and Rodrigues, 1989; Engle, Granger,

 and Kraft, 1984; Kaminsky and Peruga, 1990; Kroner and Claessens, 1991;
 Kroner and Sultan, 1993; McCurdy and Morgan, 1991; among several oth-

 ers). Multivariate ARCH models allow the variances and covariances to
 depend on the information set in a vector ARMA manner and are particu-
 larly useful in multivariate financial models (such as the CAPM or dynamic

 hedging models), which require the modeling of both variances and covari-

 ances. But while most applications of multivariate ARCH have been to finan-

 cial modeling, several potential applications also exist in macroeconomics and
 in other areas of economics. For example, it is often conjectured that em-

 ployment decreases with price level uncertainty (Friedman, 1977). A hypoth-

 esis like this could be tested with the following two-equation model:

 Y = f(P,X,) (p)

 p = g(Y,X),

 where Y is employment, P is the price level, X are exogenous variables, and

 a, is the ARCH measure of price uncertainty. A significantly negative coef-

 ficient on ap would provide support for the hypothesis.
 The purpose of this paper is to examine the theoretical properties of multi-

 variate generalized ARCH models and to apply these models to systems of

 simultaneous equations where the second moments of the random variables
 may be regressors. The paper is organized as follows: Section 2 presents the

 models, discusses the positive definiteness of the covariance matrix, and
 examines covariance stationarity of the model; Section 3 analyzes the multi-
 variate GARCH-in-mean model in a simultaneous equations framework; Sec-

 tion 4 discusses estimation of the model; and Section 5 gives some concluding
 remarks.

 2. THE MODELS

 2.1. Univariate GARCH

 The parameterization of the conditional variance used by Engle (1982) to
 model the unobservable second moments allows the conditional variance

 to depend on the elements of the information set in an autoregressive man-
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 124 ROBERT F. ENGLE AND KENNETH F. KRONER

 ner. Letting St-l be the sigma field generated by the past values of E, with

 ta measurable with respect to a,-,, the linear univariate ARCH model can
 be written as

 et I a,_ I _ N(O, F2 )
 2 2 2

 This model is called ARCH of order p, or ARCH(p).

 Bollerslev (1986) generalized the ARCH process by allowing past condi-

 tional variances to appear in the current conditional variance equation. His

 variance equation becomes

 U1t = ?o + aEl I + I + + +f1u 21

 This process is called generalized ARCH of order (p, q), or GARCH (p, q).

 The simple GARCH(1,1) model often provides a parsimonious description

 of the data (see, e.g., Bollerslev, 1986; McCurdy and Morgan, 1988).

 2.2. Multivariate GARCH

 The extension from a univariate GARCH model to an n-variate model requires

 allowing the conditional variance-covariance matrix of the n-dimensional

 zero mean random variables t to depend on elements of the information
 set. Letting H, be measurable with respect to !3,i, the multivariate GARCH
 model can be written as

 et 13t-, I N(O, Ht).

 The parameterization for H, as a function of the information set !3,1 cho-
 sen here allows each element of H, to depend on q lagged values of the

 squares and cross-products of e, as well as p lagged values of the elements
 of H,, and a J x 1 vector of weakly exogenous variables (as defined by
 Engle, Hendry, and Richard, 1983), x,. So the elements of the covariance
 matrix follow a vector ARMAX process in squares and cross-products of the
 residuals. We will assume x, contains only current and lagged exogenous
 variables. Defining

 ht = vec H,

 ,= vec(x,x')

 71t = vec ( ,,' ),

 where vec(.) is the vector operator that stacks the columns of the matrix,
 a parameterization can be written:

 h, = Co + Cjkt, + AI1qt- I + *.. + Aq7ltq+ GIh,t- + *-- + Gpht,p,
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 MULTIVARIATE SIMULTANEOUS GENERALIZED ARCH 125

 where CO is a n2 x 1 parameter vector, C, is a n2 x J2 parameter matrix,
 and Ai and Gi are n2 x n2 parameter matrices. In matrix notation, this
 becomes

 ht = [Co Cl Al ...: Aq GI ...G ] t-

 hG-p

 = Fz,

 =(z' 0 I)vecF

 = Z,ca (2.1)

 where

 Z,' = ( l 1',nt-I1 ***NN-q t, tp

 F =[Co : C, : Al Aq. : :GI: .. Gp

 a = vec F

 and

 Zt = (zt' 0 I).

 Equations (2.1) define a parameterization that we will call the vec representation.
 To illustrate, consider a simple two-equation GARCH(1, 1) vec model with-

 out exogenous influences. Model (2.1) becomes

 ht = hl12,t

 h22, t

 al[ a, a 2 [I,_ ~Coi all a12 a13 g1t- I1 g12 g13 l1

 C02 + a2l a22 a23 1, t- 1 2, t-1 + g21 g22 g23 hl2, t- I
 C03 a31 a32 a33 E2, t- I Lg31 g32 g33 l22,t- I

 Notice that we have omitted the equation for h2l,t and have given no coef-
 ficient to 62,t-1 1t-I or h2 1,t1, as these are clearly redundant, leaving nine
 free parameters in each of the Al and GI matrices. Similar redundancies
 appear in the general n-variate GARCH(1l, 1) vec model. In particular, all the

 covariance equations appear twice (i.e., there is an equation for hij,, as well
 as for hji,t) and all the off-diagonal terms appear twice within each equation
 (i.e., both of the terms ej, t-1 Ij,t_I and Ej, t- I f-I and both of the terms hij, t-1
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 126 ROBERT F. ENGLE AND KENNETH F. KRONER

 and hj11,_1 appear in each equation). The redundant terms can be elimi-
 nated without affecting the model, leaving a total of ((n (n + 1))/2)2 unique
 parameters in each of the Ai and G, matrices. In a direct formulation of
 (2.1), there appears to be n4 parameters in each matrix, but many of these
 are superfluous.

 For empirical implementation, it is desirable to restrict further this param-

 eterization. A natural restriction that was first used in the ARCH context by

 Engle, Granger, and Kraft (1984) and in the GARCH context by Bollerslev,

 Engle, and Wooldridge (1988) is the diagonal representation, in which each

 element of the covariance matrix, hjk,,, depends only on past values of itself
 and past values of fj,tIk,t. That is, variances depend solely on past own
 squared residuals, and covariances depend solely on past own cross-products
 of residuals. This seems an intuitively plausible restriction because informa-

 tion about variances is usually revealed in squared residuals, and if the vari-
 ances are evolving slowly, then past squared residuals should be able to
 forecast future variances. A similar argument can be made for covariances.

 In the vec model, a diagonal representation is obtained if the matrices Ai
 and Gi are assumed to be diagonal.

 To illustrate in the bivariate case, the diagonal model is simply

 ht hI2 lt h,= Hl21
 h22, t

 Co I I 2 - gI l I ? h I , t-l
 = C02 + 0 a22 0 l1,t-1 E2,f1 + 0 g22 0 h12,t-1

 C03 1L0 0 a33 _L 62,,-i j [ 0 g33 I '-L

 or

 hIt = co, + a, 12,t-1 + gIIhI1,t_

 h12 t = C02 + a22c1,t- 12,t-1 + g22hI2,t-1
 2

 h22,t = C03 + a33E2, t + g22h22,t-I

 In the bivariate model illustrated here, there are three free parameters in each

 of the A 1 and GI matrices, and in the general n-variate diagonal model there
 are ((n (n + 1))/2) free parameters in each matrix.

 For any parameterization to be sensible, we require that H, be positive

 definite for all values of (, and xt in the sample space. In the vec represen-
 tation, and even in the diagonal representation, this restriction can be diffi-
 cult to check, let alone impose during estimation. We now propose a new
 parameterization that easily imposes these restrictions and that eliminates
 very few if any interesting models allowed by the vec representation.
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 MULTIVARIATE SIMULTANEOUS GENERALIZED ARCH 127

 Consider the following model:

 K K q

 H, = Co "Co+ + E C X,X/Ck + > ZA*/E t_iCE Ai*
 k=l k=l i=l

 K p

 + E~ E ~G*lHt-iG* (2.2)
 k=1 i=1

 where CO, A *, and Gi*k are n x n parameter matrices with Co triangular;
 C*k are J x n parameter matrices; and the summation limit K determines

 the generality of the process. It should be clear that (2.2) will be positive def-

 inite under very weak conditions. Furthermore, this representation is suffi-

 ciently general that it includes all positive definite diagonal representations
 and nearly all positive definite vec representations. It will be shown to be

 a particularly convenient representation for estimation and for analysis of

 simultaneous equations systems. Throughout the paper we will refer to this

 representation as the BEKK representation. 1
 To illustrate the BEKK model, consider first the simple GARCH(l,l)

 model, with K = 1 and no exogenous influences2:

 H, = CO 'CO + A l l At-1 I,'_I A l I + Gt 'H,Gt I G. (2.3)
 In the bivariate case, which is illustrated for both the vec and diagonal rep-
 resentations earlier, the BEKK model becomes

 H,=C*'O*+ [at1 a*21'F e I e1, -I2, 1 [aIa at21
 Ht Co' Co* [a 1 2I 1 a2

 + 91 12 3 Ht- 1*i 912] 92 922 g ,lg*l g*

 or, suppressing the time subscripts and the GARCH terms,

 *2 2 * 2 2
 hll= c1l + allEl + 2aal a2*l lE 2 + a2* 2c

 * 2*22

 h= c2 + al la*21 + (a*, a*2 + a*l a*2)6 1I2 + a*1 a*262
 *2 12 * 2 2 2 2 2

 h22= c13 + al 2E1 + 2a2 a2 E 62 + a22C2-

 Comparing this model to the vec form of the model, we see that this model
 economizes on parameters by imposing restrictions both across and within
 equations. In fact, for n = 2 we see that this representation uses only eight
 parameters, compared to the 18 from the vec model (excluding constants).

 Before formalizing the relationship between the BEKK and vec models, we
 first discuss the identification of the parameters in model (2.3). Proposition
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 128 ROBERT F. ENGLE AND KENNETH F. KRONER

 2.1 shows that under simple and straightforward conditions the parameters

 in this model, i.e., the parameters in the BEKK model with K = 1, are iden-

 tified. Defining two representations to be equivalent if every sequence l I

 generates the same sequence I H, I for both representations, we have the fol-
 lowing proposition.

 PROPOSITION 2.1. Suppose that the diagonal elements in CO are
 restricted to be positive and that a*1 and g1 are also restricted to be positive.

 Then, if K = 1, there exists no other CO, A*, or G* in model (2.3) that will
 give an equivalent representation.

 Proof. All proofs are given in the Appendix. a

 In practice, nonnegativity restrictions on parameters are easy to impose,

 for example, by estimating the square root of the restricted parameter, mak-

 ing identification of the parameters in (2.3) relatively easy for estimation.

 Also, it should be clear from the proof of Proposition 2.1 that the pur-

 pose of the restrictions is to eliminate all other observationally equivalent

 structures and that there are several other sets of sufficient conditions that

 could be used in place of those given. For example, as relates to the term

 A*1s,_le ,LA*, the only other observationally equivalent structure is ob-

 tained by replacing A* with -A*. The restriction that a*, be positive could
 be replaced with the condition that a* be positive for a given i and j, as
 this condition is also sufficient to eliminate -A * from the set of admissible
 structures. A final comment is that we decompose the constant matrix into

 C0 ' Co only to ensure positive definiteness; in practice, the elements of Co
 are not of interest. We chose this decomposition because of its simplicity, but

 any other identifiable factorization of the constant matrix could be used.
 The preceding discussion and illustrations all deal with the BEKK model

 with K = 1. Clearly, however, setting K = 1 involves imposing restrictions

 on the model that might not be desirable in practice. The full generality of
 the BEKK representation can be recovered by simply adding more positive

 semidefinite terms to the variance equation, i.e., by letting K > 1 in (2.2),
 giving in the GARCH(1,1) case

 K K

 H, = C0'Co + ZAl ket et_IA k + E G H,tG-I(. (2.4)
 k=l k=1

 The question of how large K must be for the BEKK representation to be

 "fully general"-i.e., to be equivalent to as many vec representations as
 possible-is answered in part by Proposition 2.2, which gives conditions
 on the Atk and Gtk matrices that must be satisfied in order to eliminate all
 the unnecessary restrictions.
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 MULTIVARIATE SIMULTANEOUS GENERALIZED ARCH 129

 PROPOSITION 2.2. In order for the GARCH(l, 1) BEKK model to
 achieve full generality, the following two necessary conditions must hold:

 (a) Define s = (n (n + 1)) /2. Then, K must be large enough that there are a total

 of at least 52 distinct parameters in the A 1 k matrices.

 (b) Define a* k to be the ijth element of A*I k. Then, there must exist an AI k
 matrix that contains either the pair of nonzero elements (a*, k, a).m k) or the
 pair of nonzero elements (a)k,a,k), for all i, j, 1, m between 1 and n.

 Similar restrictions hold for the G*k matrices.

 The first condition simply says that if there are fewer parameters in the

 BEKK model than in the vec model, then the BEKK model is implicitly im-

 posing some unnecessary restrictions. The second condition says that certain

 pairs of parameters must appear together in an A Ik matrix for some k in
 order not to impose extra implicit restrictions. To illustrate, consider the case

 for n = 2. The following set of A Xk matrices satisfies the conditions in Prop-

 osition 2.2:

 A all, a12,1] A* = [a, ,2 a12,2 A a, [a1 01
 0 a22'1 a21,2 0 a21,3 a22,3

 But the following matrices violate condition (b) of Proposition 2.2 and there-

 fore cannot give a fully general parameterization:

 [a, a1,I a12,1 A* [a11,2 a12,2] A* 1[al3 01
 L a22,1J [2 0 0J '13 L21,30

 A*14 [? a12]
 O0 a22,4

 because the pair a21 and a22 never appears together in any of the A*I kmatri-
 ces. This restriction translates into the restriction that the term 62,-1 does
 not appear in the covariance equation.

 Of course, Proposition 2.2 gives only necessary, and not sufficient, con-
 ditions for the full generality of the BEKK model. Many different sets of suf-

 ficient conditions are possible. For example, to look at an extreme case, one

 set of sufficient conditions is that K = s and none of the A *, matrices have
 any restrictions on its elements. However, this results in identification prob-
 lems because there are now several equivalent models in the BEKK frame-

 work. For example, interchanging A 1 and A*2 will give an observationally

 equivalent structure. In general, an identification problem like this arises in
 the BEKK model whenever K > 1, and therefore restrictions must be im-

 posed on the At,k and Gt, matrices to eliminate other equivalent represen-
 tations. Many different sets of restrictions could be used, but Proposition 2.3
 gives a particularly convenient one because the model presented therein is

 also fully general.3
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 130 ROBERT F. ENGLE AND KENNETH F. KRONER

 PROPOSITION 2.3. Suppose the diagonal elements of CO are restricted

 to be positive. Consider the class of BEKK models in which A kr' where
 kr = n (r - 1) + 1, .. ., nr, and r = 1, . . . ,n, is the matrix obtained by setting
 the first r - 1 columns and the first kr- n (r - 1) - 1 rows to zero. Suppose
 also that a*n,kr> 0 vkr and that similar restrictions are placed on the Gtkr
 matrices. Then, a fully general BEKK model is obtained which has no other

 equivalent representations in this class.

 Notice that in this representation K = n2. To illustrate, if n = 2, then the

 following set of A 'k matrices will give a fully general BEKK model with no

 equivalent representations:

 = a*,,, a*~, 1 A =[0 01 A* 0 a*
 2a21, a22iJ 2a21,2 a22 L20 a223

 A4 - O a2*2
 A~~4=[~ a2241

 One obvious corollary to this proposition is that for any BEKK model with

 K = 2, a sufficient condition to identify the model is that for some i the

 ith row of A*12 contains only zeros, while the ith row of A*1 contains non-
 zero elements. Of course, a similar restriction would have to be imposed on
 G* , and the positivity restrictions in Proposition 2.3 would also have to be

 imposed.

 We now turn to a formalization of the relationship between the BEKK and

 vec parameterizations. The mathematical relationship between the parameters

 of these two models can be found by vectorizing both sides of equation (2.4),

 recognizing that vec(ABC) = (C' 0 A)vec(B):

 K

 ht = (CO 0 CO)'vec(In) + > (A7I k ( A k)'vec( - 1 c-1>)
 k=l

 K

 + E (G* 0 Grk)'vec(H,-1).
 k=I

 Therefore,

 K K

 Al = Z (A*k 0 Atk)' and GI1 Z (Gb, 0 Cr)',
 k=l k=I

 which leads to the following proposition regarding the equivalence of the

 two models.

 PROPOSITION 2.4. The vec and BEKKparameterizations are equivalent

 if and only if there exist CO, A* , and G0,* such that
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 MULTIVARIATE SIMULTANEOUS GENERALIZED ARCH 131

 CO = (Co CO )'vec(In)
 K

 A1 = E (A* (g) A*) (2.5)
 k=1

 K

 G= (G* 0 G*)'.
 k=1

 One implication of Proposition 2.4 is that the vec model implied by
 any given BEKK model is unique, while the converse is not true. The

 transformation from a vec model to a BEKK model (when it exists) is not

 unique, because for a given A1 the choice of ATk is not unique. This can
 be seen by recognizing that (A*k 0 Atk) = (-A*k 0 -A1k), SO while
 AI = ZK I (A* (g A*z)' is unique, the choice of A* is not unique.

 A second implication of Proposition 2.4 concerns the relationship between

 the BEKK model and the diagonal model. In particular, relations (2.5) make
 it clear that a diagonal model is returned from the BEKK parameterization

 if and only if each of the A* and G, matrices are diagonal. It will be shown

 later that further restrictions can be placed on the diagonal elements of A,k
 and G, in order to obtain a diagonal model, but we will postpone that dis-

 cussion until Proposition 2.6.

 A third implication of Proposition 2.4 is the characterization of which vec

 models have BEKK representations and which do not. More specifically, we

 see that the vec models excluded from the fully general BEKK parameteriza-

 tion are those for which no Co, A* , and G, exist that satisfy relations (2.5).
 Proposition 2.5 demonstrates that this includes all nonpositive definite vec

 parameterizations. In fact, this is arguably the key feature of the BEKK

 parameterization: positive definite covariance matrices are generated by

 essentially unrestricted parameterizations. More precisely, we have the fol-
 lowing proposition.

 PROPOSITION 2.5. If Ho,H_1, . . .H,lH_ are all positive definite,
 then the parameterization of the GARCH equations given in (2.2) yields a

 positive definite H, for all possible values of Et if the null space of CO and
 the null spaces of G*k, i = 1,.. . .,p, and k = 1,. . .,K, all intersect only at
 the origin.

 A sufficient condition for this null space criterion to hold is that at least

 one of the Co or G* be of full rank.
 It can also be shown that the BEKK model eliminates few, if any, of the

 interesting positive definite models permitted by the vec model. In particu-

 lar, all positive definite diagonal vec models can be written in the BEKK
 framework, so that if one restricts the focus to diagonal models, the BEKK

 model is equally as general as the vec model.
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 132 ROBERT F. ENGLE AND KENNETH F. KRONER

 PROPOSITION 2.6. In the vec model, suppose that the constant part of

 the covariance matrix is positive definite, so that CO = vec(Q), where Q is
 positive definite. Suppose also that Ai and Gi are diagonal. Then, if H, is
 positive definite for all possible realizations of E,, there exists a triangular

 matrix CO* and diagonal matrices A7k and G * , k = 1,... , n, such that

 C0 = vec(C0'Co*)
 n

 A- = (A*- (9 A*k)
 k=I

 n

 Gi= (G,* 0 G*)'.
 k=l

 This proposition says that the BEKK model includes as special cases all

 possible positive definite linear diagonal models and is in this sense "general."
 The proof of Proposition 2.6 makes it clear that further restrictions can be

 placed on the A*k and G, matrices, beyond just diagonality, without affect-
 ing the generality of the diagonal BEKK model. In particular, we can restrict

 each of the A*k and G,k matrices to be diagonal with the first n - k elements

 on the diagonals set to zero. By Proposition 2.3, this restricted model will
 have no other equivalent representations in its class, meaning that we have

 a fully general linear diagonal model that is both identified and positive def-
 inite, making estimation relatively simple.

 2.3. Covariance Stationarity

 Finally, we turn to a discussion of the necessary and sufficient conditions for

 covariance stationarity of the multivariate GARCH process. Define the lag

 operator L such that LkW, = W,k. Also, assume that t is a doubly infinite
 sequence and define the multivariate GARCH process as

 00

 h,= Z G(L)'-'[CO + A(L)r,] (2.6)

 Notice that parameterization (2.6) nests both the vec model and the BEKK
 model. To see this, notice that (2.6) implies

 h, = CO + A(L),qt + E G (L)I'-'[Co + A(L)r,]
 i=2

 =CO + A (L) -q, + G (L) G G(L)'-'[ Co + A (L) 77t

 = CO + A(L),qt + G(L)h,.

 Defining A(L) =AIL + A2L2 + .+ AqLq and G(L) = GI L + G2L2 +
 * + G LP gives vec model (2.1), and defining A(L) = ZEK (AXk 0
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 MULTIVARIATE SIMULTANEOUS GENERALIZED ARCH 133

 Ak)'L + + Zk=q (Aqk 0 Aqk)Lq and G(L) = Z (Grk (D Gtk)'L +
 *** + EKI (Gp* 0 G*k)'LP gives BEKK parameterization (2.2).

 PROPOSITION 2.7. Suppose the process Jt I, is a doubly infinite
 sequence and equation (2.6) defines the GARCH process. Then, et I is
 covariance stationary if and only if all the eigen values of A (1) + G (1) are

 less than one in modulus.

 This implies that in the vec model I e I is covariance stationary if and only
 if the eigenvalues of EqZI Ai + Z'LI Gi are less than one in modulus. Also,
 in the BEKK model, t t l is covariance stationary if and only if all the eigen-

 values of q I Ek= (A*k 0 A*) + -I EK I (G0 @ G0k) are less than one
 in modulus. It is evident from the proof to Proposition 2.7 that the uncon-

 ditional covariance matrix, when it exists, is given by

 E(qt) = [I - A(1) - G(l)]-1 vec C0. (2.7)

 Focusing on the GARCH(1,1) model, this implies that the unconditional

 covariance matrix in the vec model is

 E(nt) = [I-A - G ] CO (2.7a)

 and in the BEKK model with K = 1 it is

 E ,= [- I (A 0 A, G)'- (Gt1 0 G l)']1 vec Co 'Co . (2.7b)

 Several other implications are also apparent. For example, the diagonal vec

 model is stationary if and only if the sums aii + gii are less than one for all

 i, and the diagonal BEKK model is stationary if and only if >Z=, (a*2 +
 g112k) < 1 for all i. However, it is important to recognize that it is only in
 the case of diagonal models that the stationarity properties are determined

 solely by the diagonal elements of the A* and G* (or Ai and G1) matrices.
 In non-diagonal BEKK models, for example, it is possible to have diagonal

 elements exceeding one yet the process be stationary. For example, in the

 GARCH (0,1) model with K = 1 and

 [2.1 0.2] All 0. 2 0.7
 all four eigenvalues of (A* t1 A*,) are 0.81. By Proposition 2.7, this pro-
 cess is stationary even though the diagonal elements of A*1 are not both less
 than one.

 3. THE REGRESSION MODEL

 Applying BEKK representation (2.2) to a simultaneous regression model with

 the second moments appearing in the structural mean equations gives the
 multivariate GARCH-in-mean model4
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 e= ryt + Bxt + Aht

 et I St- I N(O, Ht) (3.1)
 K K

 Ht =Co*'Co + E A *Et_ I eflA Ak + Z Gt* HtI G,k,
 k=1 k=1

 where ,nxn, B,xj and Anx, are parameter matrices; y, (n x 1) are endog-
 enous variables; x, (J x 1) are weakly exogenous and lagged dependent vari-
 ables; the second moments in the mean equation, ht = vech (Ht) and vech (H)
 stacks the lower triangle of matrix H, are predetermined but not weakly

 exogenous variables.5 These moments, ht, are not weakly exogenous for r,
 B, and A because the information matrix is not block-diagonal between these
 parameters and the parameters in the marginal distribution of ht. This can
 be seen by examining the simplest of cases-the GARCH(0,0) model with no

 intercepts in the mean equations. If Ht = Co ' C i= A, then

 I = (vecA A r'-I )z-I'-IA(I0 t) * 0,

 where I,A is the block of the information matrix that corresponds to the
 interactions between vec(A) and X, t is a n' x 1 vector of ones, and X-
 vec(A). Alternatively, notice that in the general GARCH(1, 1) model ht is a
 function of Et-l, and Et-1 are functions of the same parameters as h,. So the
 parameters in the mean equations cannot be estimated without estimating the
 variance equations. Hence, there is no sequential cut (Engle et al., 1983).

 The reduced form of (3.1) will also have a multivariate GARCH represen-

 tation because nonsingular linear combinations of multivariate GARCH

 models are GARCH.

 PROPOSITION 3.1. If e, is a multivariate GARCH process and P is a
 nonsingular matrix, then Pe, is also a multivariate GARCH process of the
 same order.

 One implication of this proposition is that if GARCH is placed on the
 structural errors as in (3.1), then letting P = I", we see that the reduced
 form will also have GARCH errors with the same orders. In particular, we
 have

 yt = -r-Bxt - r-'Aht + r-'et

 = 1l1xt + 1l2ht + vt (3.2)

 PtIat-, - N(o,F1Htr -').
 Furthermore, if the conditions for positive definiteness were satisfied in the
 structure, then they will be satisfied in the reduced form. Several other impli-
 cations of this proposition become readily apparent from the following sim-
 ple relations between the structural and reduced form parameters, which are
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 developed in the proof to Proposition 3.1: For the BEKK parameterization,
 the relationships are

 c* Fr -C*
 rf,O O

 FA ~ A>kF rrf, ik = S,ikr

 rGr* G* Gr, ik G 1k F,

 and for the vec parameterization they are

 (rF r)crf,O =c,o

 (r X )Ar,i = As,i(F r)

 (rF 0F)Grf,i = Gs,(r 0 r),

 where the rf subscript refers to reduced form parameters and the s subscript
 refers to structural parameters. For example, one implication is that if the
 GARCH error process is placed on the reduced form model, then the struc-
 tural model must have GARCH errors. Also, if any part of the structural
 (reduced form) covariance matrix follows a GARCH process, then in gen-
 eral the complete reduced form (structural) covariance matrix will follow a
 GARCH process.

 Identification of the structural coefficients in (3.1) using h, cannot proceed
 as in the standard simultaneous equations model both because linear com-
 binations of the structural equations in the system will change the definition

 of h, and because h, is unobservable and consistent estimates of h, can only
 be obtained if the model is identified. But rewriting Ah, in terms of the
 reduced form covariance matrix permits standard identification procedures.6
 To do this, we first note that because the parameters in the conditional
 covariance matrices are identified (see Section 2.2), we can get consistent esti-

 mates of the reduced form covariances h* = vech(r-1 H,_ r-1'). Using

 ht = vech(Ht) = R vec(Ht) = R (rF )vec(r-1Htr-F)

 = R(r 0 F)Sh7,

 where Rsxn2 is the selection matrix such that vech (P) = R vec(P), and Sn2xs
 is the expansion matrix such that vec(P) = S vech (P) for any square matrix
 Pnxn, gives

 Aht = AR(r 0 r)Sh7 = A*h* (3.3)

 This gives the new system

 Fy, + Bxt + A*h7 = Et, (3.4)

 where h*, though unobservable, is consistently estimable and is invariant
 with respect to linear combinations of the structural equations. Identifica-
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 tion of the new system of (3.4) now reduces to the standard problem of iden-

 tification of a linear system (with variables y, xt, h, ) that is nonlinear in the

 parameters. The nonlinearities arise because A* =.AR(r (g )S is a nonlin-
 ear function of A and r. So necessary and sufficient conditions for iden-

 tification in this model must be given by conditions involving (r,B,A*),

 not (r, B, A), as might at first seem natural. In other words, restrictions on

 A must first be transformed into restrictions involving A* before they can be

 used in identification.

 To illustrate the problems that can arise if Aht is used in identification
 instead of A*h*, consider the following bivariate system of equations (ignor-

 ing time subscripts):

 Yi = fIY2 + Xllhll + X13h22 + -3
 (3.5)

 Y2 = X21 hII + X22h12 + X23h22 + 62-

 Identification of this system means that premultiplying by any nondiagonal

 matrix does not give an observationally equivalent structure. However, pre-

 multiplying this system by the matrix

 T[~ ?I]
 gives the new system

 YI = (31 - V)Y2 + (X11 + vX2I)hII + (\13 + VX23)h22

 + vX22hI2 + c- + vE2 (3.6)

 Y2 = X21h II + X22h12 + X23h22 + E2

 When estimating system (3.6), the GARCH-in-mean terms will be measur-

 ing the conditional variances and covariances of the residuals in transformed

 system (3.6), not those in original system (3.5). The residual in the first trans-

 formed equation is E1 + VE2, which has conditional variance h'f = hll +
 2vhI2 + v2h22, and the residual in the second transformed equation is still
 E2, which has conditional variance h22 = h22. The conditional covariance
 between the transformed residuals is h' = h12 + vh22. Solving these three

 relationships for h1l, h12, and h22 and then substituting into (3.6) gives

 Yi = (- V)Y2 + (\II +vX21)h,o + V(X22 - 2X11 - 2VX21)hj'
 + [X13 + vX23 + v2(X1 - X22) + v3X21]h22 + EI + VE2

 Y2 = X21 hf' + (X22 - 2vX21)h + (X23 - vX22 + v 2X21)h22 + E2*
 Setting

 X22X- 2XI
 v =

 2X21
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 gives an observationally equivalent structure to (3.5), indicating that the first

 equation in (3.5) is not identified. However, using traditional rank and order
 conditions on (3.5) would erroneously lead us to conclude that system (3.5)

 is identified. This happens because the definition of h, changes in different
 structures, so h, is no help in ruling out equivalent structures. But reduced
 form variances and covariances are invariant to different structures, so a pri-
 ori restrictions on the reduced form variances and covariances in the mean
 equations can be used for identification purposes. Using (3.3) to rewrite (3.5)
 in terms of reduced form variances and covariances gives the new system

 YI = f31Y2 + X11ht1- 2fl1X11hj + (Xn + 32)XI1)h2 + c1
 (3.7)

 Y2 = X21hl1 + (X22 - 2fl1X21)hj2 + (X23 - f1 X22 + flX21)h*2 + 62,

 where h,$ are the reduced form variances and covariances. In this system, it
 is straightforward to show that the same linear combination of equations as

 earlier results in an observationally equivalent structure to (3.7), meaning sys-
 tem (3.7) is not identified. However, it is clear that restrictions on the reduced
 form variances and covariances in system (3.7) can identify the system. For
 example, if it is known that the coefficient on h * is zero in (3.7), then the
 system is identified. To conclude, rank and order conditions can be used with
 h,* treated as predetermined, giving standard identification results. This is
 often natural because h,* is the set of forecast variances and covariances of
 the endogenous variables. The use of standard rank and order conditions on
 h, may give incorrect identification conclusions.7

 4. SYSTEM ESTIMATION

 On the one hand, if A equals zero in model (3.1) and the system is identified,
 the equations can be consistently estimated with two-stage or three-stage least
 squares, ignoring the GARCH error structure, because the reduced form esti-

 mates of yt remain uncorrelated with Et. However, more efficient estimates
 can be obtained by accounting for the error structure, for example, by using
 full information maximum likelihood or an instrumental variables estima-
 tor. On the other hand, if A * 0, then full information methods are gener-
 ally required to obtain efficient or often even consistent estimates of the
 models' parameters. Before discussing these methods further, we will first
 present the likelihood function.

 Although the error vectors E are conditionally multivariate-normally dis-

 tributed, their outer products E,E are not independent through time. For
 example, E12, need not be uncorrelated with 1, t_. Hence, the joint distribu-
 tion of (E1, 2,. . . ,ET), where Tis the number of observations, need not be
 multivariate-normally distributed. But the joint density is the product of all
 the conditional densities, so the log likelihood function of the joint distribu-
 tion is the sum of all the log likelihood functions of the conditional distri-
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 butions, i.e., the sum of the logs of the multivariate-normal distribution. So

 if we are estimating reduced form model (3.2), then letting L, be the log
 likelihood of observation t, and L be the joint log likelihood, gives

 T

 L = ELt
 t=1

 Lt =2 In(2ir) -2 lnIHrf,, t 't rf4 (4t1)

 Proposition 3.1 says that the structural model will also follow a multivari-

 ate GARCH process, so applying the transformation e, = 17't gives

 L,= n In(27r) + ln I l- - lnI Ht - - ,H-,. (4.2) 2 2 2 E t

 Of course, these likelihood functions are not fully specified until we make

 assumptions on initial conditions. A reasonable set of assumptions is that all

 presample data be fixed at their unconditional expectation. So, for example,

 EO is assumed to equal its unconditional expectation, given in equation (2.7).
 Note that because no reference is made in (4.1) or (4.2) to the functional

 form chosen for the conditional covariance matrix, the results of this section

 apply whether the vec or BEKK parameterization is chosen. In either case,

 however, the models are large and complex, leading one to question how flat

 the likelihood function is with respect to many of the parameters in the

 covariance equations. A reasonable procedure is to estimate a restricted

 model such as the diagonal model or the BEKK model with K = 1 and then

 use a Lagrange multiplier test to examine the validity of the restriction.

 Define E to be the nonredundant parameters in the covariance equations,
 so that

 ' = [(RCO)', (RA, S)', . . .,(RAqS)', (RG, S)', . . .,(RGpS)']

 for the vec representation or

 = [CO',A;,.1. . ,A*'G1,. . G,CK
 for the BEKK representation. Then, the maximum likelihood estimator for

 the parameters in the structural model, F, B, A, and , is found by maximiz-
 ing (4.2) with respect to these parameters. Unfortunately, the properties of

 maximum likelihood estimators in GARCH models are still open to debate,

 so little can confidently be said about the asymptotic properties of this esti-
 mator. Furthermore, the properties of maximum likelihood estimates of

 GARCH-in-mean models (A * 0) have not even been addressed in the lit-
 erature. Instead of attempting to close the book on these issues here, we refer

 the reader to the papers by Bollerslev and Wooldridge (1992), Lee and Han-

 sen (1994), Lumsdaine (1991), Pagan and Sabau (1987), or Weiss (1986),
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 which all address (with varying degrees of success) the properties of maxi-

 mum likelihood and quasi-maximum likelihood estimates in univariate

 ARCH models.

 Letting 6' = [(vec r)', (vec B)' (vec A)', (vec )'] and differentiating (4.2)
 with respect to 0 gives

 aLt I ahtI ( (H-1 0 H7' )vec(O -H,) ac 2 a, aot

 (avecF N' a, N't

 - ( a vec((rF) - 'o) H-,Et.
 Noting, for example, that8

 aht, q aEt- aht-
 = ZAi[(I 06t,j) + (,,-0 I)] '' + ZGI a8vec B a vec B a dvec B

 and that

 a,E' = (xt I) + A -aht
 a vec B a vec B

 we see that calculation of (ah,) /(M9) is complicated by the fact that (ah,) /(a)

 depends on (aht_ )/(a0) if Gi ? 0 for any i or if A ? 0. Hence, the use of
 analytical derivatives would require calculating (aht,)/(O) recursively, with
 (aho)/(aO) assumed to be independent of 0. Because of this problem and
 because the derivatives (ah,)/(36) and (aet)/(ao) are so cumbersome, non-
 linear maximization methods and numerical derivatives seem appropriate.

 Many nonlinear maximization methods are available, but a particularly con-

 venient one and one that the authors have found useful in practice is the

 Berndt, Hall, Hall, and Hausman (1974) algorithm, which is an iterative

 method of calculating the optimal parameters in which the updating term is

 found by a regression of a vector of l's on the scores (aL)/(a0):

 6i+I = Oi + Ti(S'S)'S'Lt

 Here, [S]tk = (aLt)/a0k, i represents the iteration number, t is the vector of
 1's, and ri is the step length that is calculated at each iteration by a line
 search. There are three features of the BHHH algorithm that make it par-

 ticularly advantageous in these models. First, it is easy to use in practice,

 because its use requires little more than a subroutine to compute numerical
 derivatives and a subroutine to compute OLS regression parameters. Second,
 under normality, the (S'S)-' from the final iteration can be used as a con-
 sistent estimate of the variance-covariance matrix of the parameters. And

 third, Lagrange multiplier statistics are easily computed as T times the R2 of

 the regression in the first step of the BHHH iteration, starting at the esti-

 mates under the null. This provides a particularly easy way to test the valid-

This content downloaded from 73.92.10.170 on Fri, 18 Aug 2017 14:55:27 UTC
All use subject to http://about.jstor.org/terms



 140 ROBERT F. ENGLE AND KENNETH F. KRONER

 ity of any restrictions that might have been imposed during estimation, such

 as diagonality, p = q = 1, or A = 0, and suggests the following model build-
 ing strategy: Begin by estimating a diagonal BEKK model with K = 1, then
 use the Lagrange multiplier test described above to examine whether the

 diagonality restriction is valid. If not, then either additional factors can be

 added or additional terms added to the first factor. Alternatively, if the vech
 model is chosen, then one could begin by estimating a diagonal vech model

 and then use the preceding LM test to examine the validity of the restriction.
 If rejected, then the appropriate nondiagonal terms should be added. This

 "bottom-up" model building procedure is easy to use in practice because diag-
 onal models are not difficult to estimate, and once they are estimated the LM
 tests are very easy to compute using the procedure described above. Further-

 more, if the restrictions are rejected, then the diagonal model provides an
 obvious set of starting values to use in the nonlinear estimation of the unre-

 stricted model. However, as usual, this model building procedure is only
 guaranteed to be consistent in certain special cases.

 Of course, BHHH is only one of several possible optimization algorithms,

 each of which has its advantages. For example, it is widely recognized that
 as one gets closer to the optimum the benefits to calculating the expected
 value of the Hessian become enormous, relative to using the outer product

 of the scores (as in BHHH). This is both because the convergence rate tends
 to increase enough to offset the extra effort required and because the esti-
 mated standard errors tend to become more accurate.

 Note that in the reduced form model with A = 0 the information matrix
 is block-diagonal between the parameters in the mean equations and the

 parameters in the covariance equations (Kraft and Engle, 1983). This means

 that efficient estimates of HI can be calculated independently of 5, given
 only vTconsistent estimates of S. Similarly, efficient estimates of ,.can be
 calculated independently of HI, given only T-consistent estimates of HI.
 This suggests the following estimation procedure. First, obtain consistent esti-

 mates of HI (call then HII) from a seemingly unrelated regression.9 Then,
 maximize likelihood (4.1) with respect to vec 5, given II,, to get an estimate
 of vec 5, say vec. Finally, maximize (4.1) again, this time with respect to II l (given vec ), imposing the structural restrictions, to get fll. (fi , vec `)
 are asymptotically equivalent to the maximum likelihood estimates. If this
 procedure is iterated and converges, the estimates will solve the first-order
 conditions for full information maximum likelihood estimation.

 5. CONCLUSION

 This paper extends Engle's (1982) ARCH model and Bollerslev's (1986)

 GARCH model to a multivariate setting. To parameterize the multivariate
 process so that positive definiteness is ensured, a new formulation is pre-

 sented and compared with that used in much of the existing multivariate
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 ARCH literature. Equivalence relations between these parameterizations are

 derived, conditions for covariance stationarity are presented, and the rela-
 tionship between the reduced form and structural models is analyzed. Max-

 imum likelihood estimation of the system is then discussed, though we have

 little to say about the properties of this estimator. This area is perhaps one

 of the most important areas for future research in multivariate ARCH mod-

 eling. Very little is currently known about the properties of maximum like-

 lihood estimators in univariate GARCH models, let alone in multivariate
 GARCH-in-mean models, despite the fact that this estimator permeates the

 multivariate GARCH-in-mean literature.

 NO TES

 1. This acronym comes from an earlier version of this paper, which synthesized the work
 on multivariate ARCH models by Yoshi Baba, Rob Engle, Dennis Kraft, and Ken Kroner.

 2. For the remainder of this section of the paper, the terms representing the exogenous influ-
 ences will be dropped in order to shorten some of the equations and proofs. From the struc-
 ture of the proofs, it should be clear that the extension would involve simply repeating some
 of the steps of the proofs or adding another term to the proofs.

 3. To keep the notation as simple as possible, we focus on GARCH(l, l) models. The gen-
 eralization to higher-order models is trivial.

 4. Again, we focus here on the GARCH(l,l) model to keep the notation simple. Also, we
 focus only on the model with variances and covariances in the mean equation. The implications
 of using standard deviations or other functions of the variances, as in Kroner and Lastrapes
 (1993), will be the same.

 5. The vech operator is the vector-half operator, which stacks the lower triangular portion
 of a matrix.

 6. We would like to acknowledge an anonymous referee for suggesting this solution.
 7. Notice that, because the unconditional distribution is not normal, information in the higher

 moments and in the information matrix can also be used to help identify the model.
 8. This derivative assumes the vec model was used. A similar expression holds for the BEKK

 model.

 9. See equation (2.7) for the formula for the unconditional covariance matrix.
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 APPENDIX

 Proof for Proposition 2.1. First, we show that if the diagonal elements of CO are
 restricted to be positive, then the CO matrix is identified: If the diagonal elements of
 CO are positive, then we know that CO ' CO is a positive definite matrix. But by Prop-
 osition 58 and Remark 34 of Dhrymes (1984, pp. 68-69), the decomposition of a pos-
 itive definite matrix into the product of a triangular matrix and its transpose always
 exists, and this decomposition is unique if the diagonal terms are restricted to be
 positive.

 Next, we show that a*, > 0 is sufficient to identify the A*, matrix. Straightforward
 algebra reveals that the lmth element of H, is
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 n n n n

 h111,, = c + >i; a,aj*rn i -tI(-j,- 1 + > Eg*gj*n hij,,_,.
 i=l j=l i=1 j=1

 So, for example, ignoring the constant and the GARCH terms, the (1,1) element

 of H, is

 n n

 h, = Et E ai Iaj I Ei,t- I Ej,t- I

 So the cefficiet attaced to i *2
 Eb1is a1 , meaning that a*, is identified, up to its

 sign. Restricting it to be positive identifies this term. Next, the coefficient attached

 to e,/ ,_ej,t-l in this equation is (a, aj* + aj,aa*) = 2a*l aj*. So aj*, is identified for
 all j because a*, is identified. So we have that the first column of A I is identified.
 Next, the (1,2) element of H, is, again ignoring the constant and the GARCH terms,

 n n

 hl2,=~~i 2 Eala i,t- I j, t-l
 i=I j=I

 The coefficient attached to E t-,_ 1 -l I in this equation is (at1 at2 + at at2). Because
 all is identified, a* must also be identified. Similar logic can be used to show that

 all the other terms in A* I are identified, completing the proof that the matrix A I I is
 identified.

 The identification of the GI, matrix follows an identical argument as above and
 is therefore not presented here. l

 Proof for Proposition 2.2.

 (a) The proof here is trivial. Ignoring the constants and GARCH terms, there are
 a total of s2 variables on the right-hand side of the covariance equations, so

 if we have fewer than S2 parameters, some restrictions are implicitly being
 imposed.

 (b) Elementary algebra reveals that the /mth element of H, in the BEKK model
 with K > 1 is

 K n n K n n

 hln c t = C + > a, ka.11fkE,1 6j,t-1 + E >i E gl,g11n,h,-1.
 k=l i=1 j=1 k=l i=l j=I

 So the coefficient attached to ii in the hln,,t equation is

 K

 Za aj*, k + a* *k
 i rn, kaki,fA

 if i j and

 K

 ka,k aim= k

 if i = j. Clearly, the term E, t_ ej,?t will drop out of the h1m,, equation if there
 is no matrix A k that contains either both of a,*k and aj1n k or both of ak and
 ain, k. Hence, for the model to be fully general, we require that either the pair

 (al k,aj,,,,,k) or the pair (ajl,ka*tn, k) appear in a A Ik matrix for some k. U
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 Proof for Proposition 2.3. First, in the proof for Proposition 2. 1, we show that
 the conditions on CO are sufficient to ensure that the elements of CO are identified.
 Also, as in the proof to Proposition 2.1, we focus our proof on the ARCH terms
 because the proof for the GARCH terms is directly analogous. The proof proceeds
 in a manner similar to the proof for Proposition 2.1.

 From the proof for Proposition 2.2, we have

 n 2 n n n 2 n n

 2 2 1
 h,,,,, = C + E >E Z ajl,krapfn,k~i,-it1; t + ZE E I EgS, gynkhi,,,

 and that the coefficient on E in the hI1,t equation is I_ a 1a,k,1 which is just
 alt21 because the restrictions on the A*kr matrices ensure that al*lkkr=? for all kr> 1.

 Therefore, a*,, is identified up to its sign. Next, the coefficient on Eiti Ej1j (j * 1)
 in the h11, equation is 2Z -I al k,aJ*l kr which is 2a1 aj*, I because the restric-
 tions on the A*kr matrices ensure that a*l,k = 0 for all /1 > 1. Therefore, a)J*, j j
 2,. . n, are identified (up to their sign) because al 11 is identified. The coefficient on

 62, in the h I 1, equation is k I a2l2k, which becomes (a2l,1 + a2l,2) because the
 zero restrictions on the other A Ik,. matrices imply that a21*k 0 for all k,. > 2. There-
 fore, a 1,2 is identified (up to its sign) because a2}l was previously identified. Proceed-

 ing similarly, the coefficient on 62,t-l Ej,r-I (if j*# 2) is 2 lk2 * * which be-
 comes 2(a21 1 aj*1 + a21 2aj*2) because the zero restrictions on the other A*k. matrices
 imply that a21 k = 0 for all k, > 2. So aj*2,j = 3,4, . . , n, are identified (up to sign),

 because all the other terms in 2(a*1 1 aj * +1,2aj*),2) were already identified. Simi-
 lar logic can be used to identify aj, k,, kr = 3,. n. So we have that the first columns
 of the A*k matrices, kr = l, . . n, are identified (except that each column can be
 multiplied by -1 without changing the model).

 To identify the second columns of the A*,,k matrices, k, = 1,. .n , we look at the
 h12, equation. The coefficient on E2 r- is En2I ala krat2,k- which equals a*,, a*2,l
 because the zero restrictions on the A*k matrices ensure that atlk -0 for all kr > 1.

 This identifies at2,1 because a*,,, is identified. The coefficient on cI,t 6,t,_, after
 accounting for the zero restrictions, is a*,,1 aj 1 + aj*,l at2, which identifies aj1 l,
 j = 2, . . ,n, because the other terms are identified. So the second column of A*1,
 is identified. The coefficient on 2t is a*1 a2 1 + a*1 2a*22 which identifies a2*2

 and the coefficient on E2,11E t-1, J = 3,.. . n, is a 121 l + aaj *,, a2 1 + a1 2*a*2 +
 a22 aj*1, which identifies a*2 2 = 3 . . , n. Therefore, the second column of A*2 iS
 identified, and continuing along these lines will identify the second columns of the
 remaining Alk,, matrices, kr = 1, . . . ,n.

 Proceeding similarly will identify the remaining columns of the matrices A t1 ..
 A In up to sign. The restriction that ann,,k > 0 will eliminate the sign problem, and
 these matrices are now identified. Identification of the remaining matrices proceeds
 analogously. For example, the elements of the h22, equation will be used to identify
 the second column of the matrices A* . A lA2*, and the elements of the hA3t
 equation will be used to identify the third column of these matrices.

 Finally, notice that every coefficient in every equation has a free parameter. There-
 fore, each coefficient can take on any value permitted by the BEKK model, and add-
 ing other A *kr matrices cannot give a model that was previously being precluded. So
 the model is fully general. U
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 Proof for Proposition 2.4. For simplicity, let p = q = 1. Then, the vec parameter-

 ization becomes

 h, = [Co : A, * G,] (A.1)
 _ht-l -

 and the BEKK parameterization becomes

 K K

 Ht = CO' C + E A EIc->l -,A*Ik + Z G"Ht-1Gk. (A.2)
 k=l k=l

 Vectorizing,

 K K

 ht= vec(Co*'Co) + vec E A ,Et1lA- k ? vec IEA G H1k Gtk
 k=I k=l

 K K

 = vec(C'CO ) + E (A *k ? A *k)'vec(Et-lI E'A ) + Z (G* 0 Gtk)'vec(H,I )
 k=I k=I

 K K

 (Co* () Co )'vec(In) + >jI (Ag Alk)'jl + E (Gj k 0 Glk)'h,l. (A.3) I Ik

 k=I k=l

 Now if relations (2.5) hold, then (A.3) becomes

 h, = Co+ AI1-q-l + GI ht-1,

 which is (A. 1), proving sufficiency. Necessity can be shown by noting that (A. 1) and

 (A.3) must hold for all t-1, so by appropriate choice of Et-,, each column of AI can
 be equated individually with each column of Z KI (A *k 0 A*k)' For example, let-
 ting '-I = (1,0,- . . ,0) establishes equality of the first column of AI with the first
 column of Zk= (AI k 0 A Ik)' Necessity of the rest of relations (2.5) can be shown
 in the same way. l

 Proof for Proposition 2.5. For simplicity, we look at GARCH(l,1) models, but

 the generalization to GARCH (p, q) models is obvious. The BEKK parameteriza-

 tion is

 K K

 H,t=C' + Co A,ok , AIt k+ EI Gl k-HIGt k.
 k=l k=1

 The proof proceeds by induction. First, H, is positive definite for t = 1: The term

 K= I A i koA *k iS positive semidefinite because EcO, is positive semidefinite. Also,
 if the null space condition holds, then

 K

 Co'Co* + E Gk HoG (A.4)

 is positive definite. This is clearly true if CO* or any G*k has full rank, but to show
 that the null space condition is sufficient, note that expression (A.4) is positive defi-

 nite if and only if
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 x'Co C* Y G*Ho G1k)x >O vx O k=1

 or

 K

 ( C&x)'( COx) + E (H 1/2 G* x)'(H -H2 G*x) > 0 vx * 0, (A.5)
 k=l

 where Ho = HoX2 'H 2 and H '2 is full rank. But defining N[P] to be the null space
 of the matrix P, (A.5) is true if and only if

 N[Co*] N[H 72G*j] n ... nN[Hg/2G* ] 0.

 Noting that N[H 12GG*k] is the same as N[G*k] because Ho1/2 is full rank gives the
 desired result-(A.4) is positive definite if and only if N[Co] n N[G,1] n n
 N[G*,K] = 0.

 Now suppose that the statement is true for n = r; i.e., suppose

 K K

 HT = CO CO + EAl r1 A,k ZGIkHTlGIk (A.6)
 k=l k=l

 is positive definite. Then,

 K K

 T+1i = CO'CO + Z A*TA + ET A ZGIkHTG*k
 k=l- k=1

 is positive definite. First, following a similar line of argument as above, the term

 K= I A A k is positive semidefinite. Second, the term

 K

 C*, Co* v ,G* HTG* t() t + X Ik IkTI
 k=l

 is positive definite if and only if the null space condition holds, because HT is posi-

 tive definite by the induction assumption. This can be shown by following the iden-

 tical steps as in the preceding paragraph, replacing Ho with H,. So

 K K

 HT+I = CO Co+ ZA kETE A*k+ ZGtI$HTGtk
 k=1 k=1

 is positive definite, meaning HT is positive definite for all T. U

 Proof for Proposition 2.6. First, suppose CO = vec(Q), where Q is positive definite.

 Then, Q = CO ' Co for some triangular CO*. Therefore, CO = vec(?Q) = vec(CO ' CO).
 To prove the remaining equations, we again assume p = q = 1. The extension to

 higher order GARCH models is obvious. Also, we only show that the equations relat-

 ing A, and A* hold; the proof for the equations relating Gi and G* is directly anal-
 ogous. First, consider the second term in the diagonal vec model, which we will label

 H,. This term can be written as
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 2
 a,, I E, t,_, d12E1,_ 1-I2, t- I . .* a] n E,,, tI'En, t-

 H,= 2l E2, f-I El,,t- I 22 C2,t- I . . . 2n C2, t- I En, t- I A7 Ht ~ ~ ~ 2.(A.7)

 - 2

 anl 1 n, t-IE1I, t-I an2 'n, t-I E2, t-I . . . ann En,t- I

 If H, is positive definite for all realizations of c,, then H, must be positive semidefi-

 nite for all realizations of c,. But H, is positive semidefinite if and only if all its prin-

 cipal minors are nonnegative. Also, the principal minors of (A.7) have the same sign
 as the principal minors of the matrix

 all a12 ... n

 - a21 a2n

 an I . . . alnnj

 implying that if H, is positive semidefinite for all realizations of E,, then A must be
 positive semidefinite. But if A is positive semidefinite, then it can always be decom-
 posed into A = B'B with B triangular. Define B to be

 bl l,n bi 1,n-1 . 611,1

 O b22, n- I .. b22,1

 O 0 .. bnn,,1

 Then,

 n n-I

 b I2 k b, 1, k b22, k . . . b, 1,l bnn, I
 k=l k=l

 n-I

 A = B'B = b b22 bnn,
 k=l

 b 2

 So if H, is positive definite, then there exists bij,k such that

 n n-I

 I ,2 k 12,t blk 22, k E 1t- I 2, t- I ,l nn, I C -I En,t-I
 k=l k=l

 n-I

 H, = t b22 k 2, b22, b,,1 *2, ,-1 En, t- I

 b2 1 E, 2 bn2n , n2,f- (

 (A.8)
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 But notice that in the diagonal BEKK model, if we define

 aII ik

 a22, k 0

 A ik = ar, k

 0

 0

 0

 where r n - k + 1, i.e., if we define A*k = diaglal l,ka2k .
 then evaluation of Ht = En= I A` l-1I-lAlk gives

 n n-I
 \'*2 2 \'*

 E. ail,kE,1t-I E a1 ka22kEI,t-1 2,?t-I . aj11,ann,E1(1,t-1En,t-I
 k=I k=l

 n-I

 H, = Z a22, k E2,t - 22 nn, Ia*i-I- .
 k=I

 *2 2
 ann, I (n, t-I

 Comparing this with (A.8), we see that if Ht is positive definite then we can always
 choose each a*, k in the diagonal A *k matrices to be equal to bi,k from the decom-
 position of A, implying that if H, is positive definite then it can always be written
 in the BEKK framework. G

 Proof for Proposition 2.7. Again, we show this for a GARCH(l,l) model, but the

 extension to GARCH(p,q) models is trivial. Also, we prove this only for the vec

 model. The proof for the BEKK model can be obtained by substituting relations (2.5)

 into this proof. Let E,_ be the expectations operator, conditioned on the informa-

 tion set , Then,

 00

 =Etla7- ZG ' '[tCO + AAj1-i ]j

 i=1

 - E,-2 L Gi'['C0 + Aipt-i]

 - CE + Ai1 [ GC [C + A 1j,1 + >,- GV'1C0 +]1

 i=l i=2
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 co coo

 = Co + Al ZG-'[Co + A,t111] + GI GV-'[Co + Al71t-i--]

 Co [l + I '-[=+Alti1

 00

 = Co + [Al + GI1 ] GV 1[Co + A,t17t-i-

 =Co + [A1I + GI ] (Co + A Iht-2) + [A1I + GI] G-'[ Co + A Ir11t-i]

 i=l~~~~~~~~=

 =C0 + (A1I + GI) Co + (A1I + G1)A1 I GV'[ Co ? A I 7ti)12

 + (Al + GI) E GV-'[Co + Al+A ),,
 12

 = CO + (Al + GI)CO + (Al + G1)AI > G-'[Co + A1nt-i-2]

 + (AI + GI) GI G' V[Co + AI77t--2]
 i=2~~~~~~

 = CO + (A, + G1)Co + (A, + G)2l > GV-'[CO + A ,_i2]

 i=l

 E-,T1,q [I+ (A1 + G1) + + (A1 + A -2]
 = O+ (A, + GlC +1 CA + AIm1T?G,l[] AN,i2

 01i
 +(Al + GI)T- EG,- [Co + AI nt-i-,+ J.

 It is widely known that for any square matrix Z, ZT -o 0 as T 00 if and only if all

 the eigenvalues of Z are less than one in modulus and that the eigenvalues of Z are
 less than one in modulus if and only if [I + Z + Z2 + ** * ] (I - Z)1- . Therefore,

 E,Tr,t converges in probability (as r-o co) to [I-A1 - GI1 -1 Co if and only if the
 eigenvalues of (A1 + GI) are all less than one in modulus. Also, by the law of iter-
 ated expectations, E((,EcJ,) = E[Et(,E,+,)] 0 O for all -y ? 0. Therefore, E(E,E,+,)
 exists and depends only on -y for all integers t.

 Proof for Proposition 3.1. Again, the proof is presented for the vec model, but
 an application of relations (2.5) reveals that the proof also applies for the BEKK
 model. Suppose

 Et Iat- I N(O,Ht)
 q p

 h,= Co + >3Ai,7)1 + Gj h,_j.
 i=l i=1
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 Define c7*- PE, ht vec PH, P' and I-(P ? P). Then, ignoring the summation
 limits, c7 | N(O, PH, P') with

 h= vec PH, P'

 =(P?()P)vecHt

 = tht

 = TCO + if Ai Asn_i + 4, Z Gi ht-i

 = 'iCo + I >A1 vec(,et-iE' j) + G > Gvec Ht-i

 = 'Co + V ZA, vec(P Pt-i,-j i P'P") + ZGi vec(P PHt-iP'P")

 = *Co + I ZAi(P-' 0 P'I)vec(PE,,i/ iP')

 + ZGi (P-1 0 P'l)vec(PHt-iP')

 = 'C0 + I ZAj(P-1 0 P I)vec(,E* ie*'i) + I Z Gi(P-' P- )h7,

 = *Co + ' ZAj(P-' 0 P-'b)-q*i + 'V Gi(P' 0 P1)h*
 = 'VCo + Z, Aj4t*i i + ZVGi4 h.-h

 Hence, PE, follows a GARCH process of the same order as E,. P
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