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Abstract: This paper studies asymmetric responses of
covariances to return shocks. Asymmetric/leverage
effects have been found in variances but few studies
have examined such effects in covarances, even
though they might have important implications for
portfolio management and hedging. We propose a
robust conditional moment test to detect the presence
of such asymmetric effects in the covariances. We also
introduce a general dynamic covariance matrix model,
which nests many of the existing multivariate GARCH
models and addresses covariance asymmetrics. To
illustrate the tests and the new model, we apply them
to weekly returns from a large firm and a small firm
portfolio. Our results snggest that bad news about
large firms can cause volatility in both small firm
returns and large firm returns. The conditional
covariance between large firm retums and small firm
returns will also increase following bad mews about
large firms. In contrast, news about small firms has a
minimal effect on variances and covariances.

I. INTRODUCTION

Recent studies on the time series properties of
siock return volatility find that volatility is predictable
and is affected by the magnitude and direction of past
return shocks. See Bollerslev, Chou and Kroner
(1992) for a survey. Specifically, large return shocks
lead to high subsequent volatiiity, with negative return
shocks inducing higher subsequent volatility than
positive return shocks of the same magnitude (Black,
1976; French, Schwert and Stambaugh, 1987; Nelson,
1991; Pagan and Schwert, 1990; Engle and Ng, 1993).
To capture such empirical regularities, many volatility
models have been developed in the literature and used
in the valuation of assets. For instance, Kuwahara and
Marsh (1992) use the GARCH and EGARCH models
to price Japanese Equity Warrants, and Amin and Ng
(1994) compare the performance of several GARCH
models in pricing individual stock options. These
papers generally find that the asymmetric/leverage
effects in volatility is important in option valuation.

While relatively few studies have examined the
existence of asymmetric effects in the covariances, it is
conceivable that such effects might exist, possibly for
similar reasons as for volatility asymmetries. For
instance, if the asymmetry in volatility is caused by a
leverage effect — an increase in the riskiness of the
stock due to an increase in the debt/equity ratio of the
firm following a price drop — then the change in
financial leverage in the firm might also change the
degree of comovement between its stock return and
other stock returns. As another possibility, if the
asymmetric effect in volatility i1s caused by an increase
in the amount of information flow following bad news,
then the covariance between stock returns will also be
affected because there would be a different relative rate
of information flow across firms. Furthermore, since
covariances play an important role in portfolio
selection, risk management and the pricing of
derivative assets, these cffects could have important
investment implications.

This paper has three contributions. First, given
the lack of diagnostic tests for multivariate models with
time varying variances and covariances, we introduce a
robust conditional moment test to detect the presence
of such asymmetric effects in covariances. Second, we
introduce a general model which nests the four most
popular time varying covariance models: the VECH
model of Bollerslev, Engle, and Wooldridge (1988),
the constant correlation model of Bollerslev (1990), the
factor ARCH model of Engle, Ng, and Rothschild
(1990), and the BEKK moedel of Engle and Kroner
(1995). Third, we work out a natural generalization of
this encompassing model to allow for
asymmetric/leverage effects in  variances and
covariances, This asymmetric dynamic covariance
matrix model nests various asymmetric extensions of
the four existing models.

To illustrate the models and the new tests, we
apply them to the bivariate system of weekly large firm
and small firm portfolio returns used in Conrad,
Gultekin and Kaul (1991). The sample period is from
July 1962 to December 1988, for a total of 1371 weekly
observations. We find that all four existing models are
misspecified, especially in the dynamics of the
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Gautam Kaul, Jennifer Conrad and Mustafa Gultekin for providing the data used :n this paper.



covariances. Using our propcsed model, we find that
bad news about large firms causes increased volatility
in both small firm and large firm returns. The
conditional covariance between small and large firm
returns also increases after bad news about large firms.
In contrast, news about small firms has a minimal
effect on variances and covariances.

2. TIME VARYING COVARIANCE MODELS

In an extension of the Capital Asset Pricing
Model to allow for time varying betas, Bollerslev,
Engle and Wooldridge (1988) model the time varying
variances and covariances of asset returns with a Box-
Jenkins ARMA type specification for the squares and
cross products of unexpected asset returns. This
specification is named the VECH model in the
literature. It has also been applied by Giovannini and
Jorion (1989) to study foreign exchange volatility, by
Bodurtha and Mark (1991) to reevaluate CAPM using
U.S. equity market data, and by Baillie and Myers
(1991) to compute optimal hedge ratios in commodity
spot and futures markets.

Let R, i=1,..., N, be the rates of return of asset
i at time ¢ Let W,_, be an information set containing
the history of all variables up to time r—1. Since
investors know ¥, ;, when they make their investment
decision at time ?—1, the relevant measures of
expected return, return variability and comovement are
the mean returns, the variances, and the covariance or
correlation conditional on ¥, ,. Let u, =E _R,,
h, =var,_(R,), and hy =cov, (Ri,,Rj,), where
E,_ (¢) is the conditional expectation operator,
var, () is the conditional variance operator, and
cov,,(e) is the conditional covariance operator.
Further, let H, E[h-

G
matrix of asset returns at time ¢. Under the VECH
model, H, is modeled as follows:

] be the conditional covariance

1 hy=w;+ ﬁxjhij,r-l FOLE; 18

for all i,j=1,---,N, where &, , =R, , —1,,, is the
stock return shock to asset i at time 7-1.

To ensure the positive definiteness of the
estimated variance covariance matrix of asset returns,
restrictions have to be imposed on the parameters to
ensure that A, (e) is a positive function and the

11,
conditional correlation p;, =h;, / hih;, 18 a
bounded function in the interval (1,—1). A sufficient
condition is that ,;>0, pB,20, «a;=0,

L3

w; < Jo,o;, By <B:B;, and o< Jao; .
Because the number of restrictions increases
exponentially with the number of assets, it is hard to
keep track of all the parameter values, even for
relatively small systems, that guarantee positive
definiteness of the estimated variance covariance
matrix.

To overcome this problem, Engle and Kroner
(1995) propose using quadratic forms to model the
variance and covariance functions. Their model, called
the BEKK model, has been applied to model the time
varying variances and covariances of different size
based stock portfolios by Conrad, Gultekin and Kaul
(1991), of international stock returns by Chan, Karolyi
and Stulz (1992), and of spot and fumres returns by
Baillie and Myers (1991).

Lete,, =(€, ,...,Ex5.) be the vector of return
shocks at time t—1, and let C, A, and B be NXN
matrices. The BEKK model takes the form

2) H,=C'C+B'H_B+A’g_g¢, A.

This model allows the conditional covariance matrix of
asset returns to be determined by the outer product
matrices of the vector of past return shocks. Given that
each term on the right hand side of (3) is expressed as
a quadratic form, the positive definiteness of the
conditional covariance matrix of asset returns is
guaranteed provided that the null spaces of C and B
intersect only at the origin (Engle and Kroner, 1995).
A sufficient condition for this to hold is that either C or
B be full rank.

‘While the positive definiteness of the estumated
conditional covariance matrix is ensured, the number
of parameters in the BEKK model is large especially
for a system vith many asset return series. Alternatives
which guarantee positive definiteness and fewer
parameters have therefore been proposed. One is the
Factor ARCH model (FAC) of Engle (1987), Engle, Ng
and Rothschild (1990) and Ng, Engle and Rothschild
(1992). Let Q be an N X N positive definite symmetric
matrix, A and w be N x1 vectors, and @ and ¢ be
scalars. The specification for a one factor ARCH
model is

3) H,=Q+ M'[fp-w'H,_1W+¢-(W'E.‘H)z].

This can be viewed as a special case of the BEKK
model, in which the A and B matrices are rank one and
share an eigenvector. Essentially, the Factor ARCH
model assumes that the conditional variances and
covariances of the asset returns are functions of the



conditional variances of a portfolio return which
follows a GARCH type process. Let R, =w’R,, where

R, =(Ry,,...,Ry,) ,be the returns to a portfolio formed
with a weight vector w. The time ¢#—1 return shock of
this portfolio is &, ,=w’s,, and the time ¢
conditional variance of this portfolio is h,, =w'H w.
The one factor ARCH model can be rewritten in the
following alternative form:

(4a) hij,:0';.3.+/’l,‘.lj-hpr foralli,j=1,...,N

2
pat-1

@b) h,=w,+¢-h,  +¢e
where Q_is the (i, ) element of Q, @ » SWQw,
ando,=Q,;-1,10,.

In Schwert and Seguin (1990) and the one factor
case in Ng, Engle and Rothschild (1992), R, is taken
to be the market return. In other words, the entire
conditional covariance matrix of asset returmns is driven
by the conditional variance of the market portfolio.
Like the BEKK model, the estimated conditional
covariance matrix of asset returns is positive definite as
long as the constant part of the conditional covariance
matrix is positive definite.

A second way to parsimoniously model the time
series behavior of the conditional covariance matrix of
asset return is the constant correlation model (CCOR)
suggested by Bollerslev (1990). This model restricts
the conditional covariance between two asset retumns to
be proportional to the product of the conditional
standard deviations of the asset returns. In this way the
conditional correlation coefficient of the two asset
returns is time invariant. Specifically, the model is:

- 2 .
(3a) by, =w; + ﬁii By +OE;, Vi=1,...,N

(Sb) hy =py;- b b,

Bollerslev (1990) applies this model to study time
varying volatility in exchange rates. Ng (1991) applies
this model to study a conditional CAPM with time
varying varances and covariance, and Kroner and
Claessens (1991) and Kroner and Sultan (1993) apply
this model to obtain better hedge ratios in currency
markets. Chan, Chan, and Karolyi (1991) use a
modified version of this model to study the volatility
relationship between stock index spot and futures
markets.

Vi#j.

To systematically analyze the asymmetric
properties of time varying covariance matrix models,

we define the following effects, where , £, is the
(N —-1)x1 vector of return shocks at time t-1,
excluding ¢, , ;:

[1] Own volatility asymmetry

A covariance matrix function
H = Q(etf[,H,,1)=[q,,-(£ H,H,_l)] exhibits  own
volatility asymmetry if for some i,
Qii(isz—l’gi,t—l’Hr-l) # qii(isr—l ’_Ei.l—l'Hnl)'

[2] Cross volatility asymmetry

A covarance matrix function H,=0(e,_,H, )
= [qu (A )] exhibits cross volatility asymmetry if
for some i and for some j#i, q,-,-(jst_l,.sj,,,j,H,fl)
# f,jrl-i(js,_l ,—SJ,-_,_,,H,,,).

[3] Covariance asymmetry

A covariance matrix function H,=0(e_,.H )
=[qu (Bl 4 )] exhibits covariance asymmetry if for
some i and for some j#i, qij(js,_l,sj,,_l,ﬂ,vl)

# ‘15(;3:71»“81'.:—1’Hr-1)-

In simple terms, own variance asymmetry means
that the conditional variance of an asset is affected by
the sign of the asset's own return shock. Cross variance
asymmetry means that the conditional variance of an
asset is affected by the sign of the return shock of
another asset. Cross variance asymmetry is in fact an
extension of the idea of volatility spillovers in Hamao,
Masulis, and Ng (1990) and Chan, Chan, and Karolyi
(1992), with good or bad news about one asset having
different effects on the volatility of another asset.
Finally, covariance asymmetry means that the
covariance between two assets is affected by the sign of
the return shock of at least one of the two assets. The
properties of the four time varying covariance matrix
models with respect to these asymmetric effects are
summarized in the following table:

Table 1: Model Summaries

own- CIoss- covariance
variance variance asymmelry
Model: asymmetry  asymmetry
VECH no no ves
BEKK ves yes yes
FAC ves yes yes
CCOR 1no 1o no




Figure 1: Covariance News Impulse Response Surfaces from the Four Basic Models
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To further describe these differences between the
models, we define “news impact surfaces,” which are
three dimensional graphs of the current conditional
covariance (variance) plotted against trailing large and
small firm shocks, holding the past conditional
variances and covariances constant at their in-sample
averages. The graph is a bivariate gencralization of
the news impact curve in Engle and Ng (1993). More
precisely, let g, , be the vector of imputs (known at
time r—1) into hy, exclading ¢;,, and €;, , and let
O be the unconditional mean of g, ;. The news impact
surtace for A, is the three dimensional graph of

it-

hy, = hy (Ei.t—l!sj,rwll g, = Q)

Variance news impact surfaces reveal own variance
asymmetry and cross variance asymmetry, while
covariance news impact surfaces reveal covariance
asymmetry.

Figure 1 shows the effects of return shocks of
different sign and magnitude on the covariance
between large and small firm portfolios implied by
these four models.” The figures clearly illustrate that

* Since our main focus is on the effect of last period's
return shocks on current volatility, we simply model
the mean of the return vector as a 10th order vector
autoregression (VAR) with 10 lags of a threshold term.
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the different models imply different news impact
surfaces for the covariances, cven though the models
are fitted to the same dataset. For example, the CCOR
model implies that bad news to the small firm coupled
with good news to the large firm causes increased
covariances, while the VECH model implies that this
causes decreased covariances. These kinds of
differences have important implications on the
computation of the optimal portfolio weights, optimal
hedge ratios, and the betas of the securities in asset
pricing problems. Therefore, we must question which,
if any, of these models correctly specify the
covariances, or equivalently, which, if any, of the
covariance news impact surfaces are good descriptions
of the data.

The threshold term is added to make sure that any
asymmetry found in the variances and covariances is
not caused by a misspecification in the mean. We do
the estimation in two steps: first we estimate the mean
equation to get the residvals, then we estimate the
conditional covariance matrix parameters jointly using
maximum likelihood, treating the residuals as
observable data.  The block diagonality of the
information matrix guarantees that consistency is not
lost in such a procedure. The estimation results (not
reported) are available from the authors.



3. ROBUST CONDITIONAL MOMENT TESTS?

To test the validity of a model, we propose to use
robust conditional moment tests (Wooldridge, 1990) to
study how well the implied news response surfaces
match the data. Conditional moment tests are
distributed x? under the null hypothesis that the
“generalized residual” has mean zero, conditional on k
“misspecification indicators”. The generalized residual
can be any function with mean zero if the model is
correct, and the misspecification indicator is the
direction(s) in which the test has maximum power.
For our purposes, the generalized residual is the
distance between the implied news impact surface and
the realized data. Specifically, it is u;, =€,&, —h; if
we are examining the covariance news impact surface,
and u;, =€ —h,, if we are examining the variance
news impact surface. It is impractical to defme
misspecification indicators that test if each point on the
surface is correct, so we propose to use indicators that
examine only a limited set of points on the news
impact surface. For most empirical applications, if the
news impact surface is the wrong height somewhere, it
is likely to be reflected in one of the following
directions (cf. Engle and Ng, 1993):

Sign misspecification indicators:

The model might systematically over or underpredict
covariances (variances) after good news or bad news. If
so, the misspecification ndicators

m; = I(si,r—L < O)’

where I(e) is the indicator function which takes the
value one if the argument in parentheses is true, should
be significant.

Quadrant misspecification indicators:

The model might systematically over or underpredict
covariances (variances) in any of the four quadrants
(€,>0,e,>0), ..., (g,<0,&,<0). If 0, at least
one of the misspecification indicators

my~ =gy, 4 <0,85, <0)

s L
m;* =1I(g,,, <0,&,,,>0)
my* =1

€,,>0,6,,,>0)

? See Kroner and Ng (1995) for a detailed discussion of
robust conditional moment tests in the Multivariate
GARCH context

should be significant.
Size-sign misspecification indicators:

The model might systematically over or underpredict
covariances (variances) following unexpectedly large
or small return shocks of different signs. A set of
misspecification indicators which tests for this is

mi =¢? I, <0)

3 i=1" \~ir-1

if-1 Ji=1

mi = g2, I(¢,,, <0)

mi =g, _I(e,, , <0)

Ji=1 i,—1

mi =g Ie;,, <0).

Table 2 below reports the robust conditional
moment test results for misspecification in the
covariances from the four standard covariance models
discussed above. The first variable in the model is the
small firm portfolio returns, and the second variable is
the large firm portfolio returns. Blank entries in the
table mean that the test was insignificant from zero at
the 5% level.

Table 2: Robust Conditional Moment Tests

VECH CCOR BEKK FAC
m! 4.85 5.17 4.85 491
m? 16.22 17.63 1627 1634
g 5.88 10.95 6.45 6.40
my" 6.84
my” 4.10
mi 11.09 1046 1267  12.06
my!
my 3.99 6.45 5.54 5.01
m 4.03 5.40 424
m2: 441 4.95 6.29 5.11

The covariance equations from all four basic
models are misspecified because they are unable to
capture asymmetric effects in the covariances. Both
sign misspecification indicators (m| and m?) are
different from zero for all the models, suggesting that
bad news (negative residuals) have different eftfects on
covariances than good news (positive residuals). This
is comroborated by the sign-size misspecification
indicators (m?), though the insignificant m;' implies
that the model does not misspecify how small firm
returns affect covariances when the small firm news 18
bad. Finaily, the significance of m, ™~ and m;"~ means



that the models misspecify how covariances respond to
bad news about the large firm portfolio, independent of
the sign of the news to the small firm portfolio.

4. NEW MODELS

These test results strongly suggest the existence of
asymmetric effects in the covariances and variances
that none of the existing models can account for. A
more general model is needed that can explicitly
capture the asymmetries. Instead of working on
extensions for each of the four models and then
comparing the large number of possible extensions, we
follow a more structured approach. First, we will
introduce a general dynamic covariance matrix model
that can nest all four models. Then, we will generalize
this model to include asymmetric effects. The
resuling asymmetric covariance matrix model
encompasses various asymmetric extensions of the four
models. The specification of the basic encompassing
model is as follows:

General Dynamic Covariance (GDC) Matrix Model
Let a;, and b, be N x1 vectors. The GDC model is
0, if i=j
h. = s
B 950 + Py 4/0:0 4 Hizj
where

ot , T ’
6,}., =0, +b,.H,_1bj + A, 80

In matrix notation, this is
H =Q+®cA's e, A+BH_B+A_CA_,

where A and B are N X N matrices with columns ¢
and b;, i =1,...N, respectively, @ is a symmetric
N X N matrix with ones along the diagonal and ¢ off
the diagonal, C is a diagonal matrix with zeros on the
diagonal and p, off the diagonal, and

A, =diag{\fh,, . aflg, |-

Parameter restrictions necessary to ensure that
variances are positive and correlations are between —1
and 1 are that p; e(-11) for all i#j and that

1¢J| <1 —lpﬁ l See Kroner and Ng (1995) for proof.

It is straightforward to show that this model nests
the BEKK, CCOR and FAC covariance models. For
example, if ¢, =0 for all i and j, the model reduces to

a CCOR model in which the coefficients are restricted
to be positive. Similarly, if p,; =0 and ¢, =1 for all i
and j, the model reduces to the BEKK model. And as

discussed in section 2 above, further restrictions on the
BEKK model will yield the FAC model. Furthermore,
the GDC model nests a positive definite form of the
VECH model. Specifically, if p; =0 for all i # j and
if @, =01, and b, = B;1, where 1, is the i® column of
an NXN identity matrix and o, and 3, are scalars,
then the GDC model is a special case of the diagonal
VECH model in which the parameters are restricted to
ensure positive definiteness. See Kroner and Ng
(1995) for further discussion and proof of these special
cases.

To generalize the above model to allow for
asymmetric effects in the variances and covariances,
we follow the direction of Glosten, Jagannathan, and
Runkle (1993) and Zakoian (1994). In particular, we
add new terms related to min(e,, ,0). The model is

defined as follows:

Asymmetric Dynamic Covariance (ADC) Matrix
Model

The ADC model is similar to the GDC model, except
that the definition of 0. is replaced with

it

_ ’ ’ ’ ’
91‘;‘: = wij + bz'H:—lbj o aigi,r-nlgj.g—laj + ﬁhi.rflnj,kiﬁfj

Wke?'e nhl = (nl.rd et nN.t—l) and ni.r—l = m'i'n(Ei.s—l ’0) "

The asymmetric dynamic covariance matrix maodel
nests some natural extensions of the four models that
allows for asymmetry in variances and covariances.

To check the performance of this model, we apply
it to our large and small firm return series. The
estimation results are reported in Table 3.* Notice that
since p is significantly different from zero, the model
cannot be simplified into the VECH, FAC or BEKK
forms. Also, since ¢ and most of the covariance
parameters are nonzero, the model cannot reduce to the
CCOR model.

To check for misspecification, we apply the set of
robust conditional moment tests to the model. With one
exception, all the conditional moment tests, for both
the variances and covariances, are insignificant. The
exception is the test associated with the sign of &,
(the large firm residual) in the covariance equation,
which is significant at the 2% level. Overall, we find
minimal evidence of misspecification for the model.

“ In this model, we replaced the term b/H, b, with

it



Table 3: ADC Model Estimates

estimate standard error

o, 0.218 0.040
0, —0.595 0.436
a,, 0.027 0.019
ap 0.217 0.015
[£3F) —0.083 0.025
dzg -0.070 0.057
az; 0.254 0.033
Jur 0.075 0.041
Jiz2 -0.008 0.037
for 0.436 0.044
Joz 0.373 0.048
P 0.381 0.151
o, 0.626 0.163
0.868 0.014

By 0.495 0.241
B ” 0.884 0.015

Figure 2 plots the news impact surfaces implied
by the ADC model. Interestingly, panel A shows that
the covariance between large and small firm returns is
higher following a negative shock to the large firm
portfolio, while it is almost unaffected by shocks to the
small firm portfolio. Next, panel B shows that the
variance of the large firm portfolio is unaffected by
small firm shocks, whether these shocks represent good
news or bad news. This confirms the results of
Conrad, Gultekin and Kaul (1991) who concluded that
small firm news does not affect large firm volatility.
On the other hand, volatility of the large firm portfolio
increases after any news to the large firm, but
especially after bad news. This could simply be a
leverage effect. Finally, panel C indicates that the
small firm portfolio has a dominant impact on small
firm variances. This supports the findings of Conrad,
Gultekin and Kaul (1991), who also show that large
firm news spills over to small firm volatlity. But it
provides the additional insight that it is only the bad
news that spills over, and not the good news.

5. CONCLUSION AND SUMMARY

Several different multivariate GARCH models
have been used in financial modeling. Each of these
models has different implications about how past news
impacts future variances and covariances. Caution
must therefore be exercised when selecting a
multivariate volatility model. We propose a set of
misspecification indicators which can aid in this
decision. We also show that the existing models

misspecify the covariances of large firm and small firm
equity portfolios. We therefore propose a more general
model that nests most of the existing models, which
passes most of the specification tests. Our model
reveals that bad news to the large firm portfolio spills
over to the small firm portfolio, but no other volatility
spillovers exist.

Figure 2: News Impulse Response Surfaces for the
ADC Model
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