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Existing time-varying covariance models usually impose 
strong restrictions on how past shocks affect the fore- 
casted covariance matrix. In this article we compare 
the restrictions imposed by the four most popular mul- 
tivariate GARCH models, and introduce a set of robust 
conditional moment tests to detect misspecijication. We 
demonstrate that the choice of a multivariate volatility 
model can lead to substantially different conclusions in 
any application that involves forecasting dynamic covari- 
ance matrices (like estimating the optimal hedge ratio 
or deriving the risk minimizing portfolio). We therefore 
introduce a general model which nests these four mod- 
els and their natural "asymmetric" extensions. The new 
model is applied to study the dynamic relation between 
large and smallfirm returns. 

The estimation of time-varying covariances between as- 
set returns is crucial for asset pricing, portfolio selection, 
and risk management. Yet the development in this area is 
lagging significantly behind the development in the time- 
varying volatility area, as evidenced by the sparcity of the 
literature on modeling time-varying covariances compared 
to modeling time-varying volatility. There is also no study 
that compares the properties and relative performance of 
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the existing multivariate covariance models. In contrast, many univariate 
time-varying volatility models have been carefully examined and compared. 
For examples, see Pagan and Schwert (1990), Engle and Ng (1993), Arnin 
and Ng (1994a, b), and Kim and Kon (1994).) 

Moreover, none of the popular multivariate models capture the asymmet- 
ric volatility effect - a phenomenon that a negative return shock (unex- 
pected price drop) will lead to a higher subsequent volatility than a positive 
return shock (unexpected price increase) of the same magnitude. In contrast, 
there are several univariate models that capture this property. For examples, 
see Nelson (1990), Glosten, Jagannathan, and Runkle (1993), and Engle 
and Ng (1993). In addition, none of the popular multivariate models allow 
for an asymmetric effect in the covariance. Such a phenomenon is likely if 
there is an asymmetric effect in the variance. For instance, if the asymmetric 
effect is caused by a leverage effect -an increase in the riskiness of the 
stock due to an increase in the debt:equity ratio of the firm following a price 
drop -then the change in financial leverage in the firm should also change 
the covariance between its stock return and the stock returns of other firms 
that have not experienced a change in financial leverage. Alternatively, if the 
asymmetric effect in volatility is caused by an increase in the information 
flow following bad news, then the covariance between stock returns should 
be affected because there will be a change in the relative rate of information 
flow across firms. 

Furthermore, there are few specification tests for the multivariate models. 
Perhaps because of this, most multivariate time-varying covariance models 
are often chosen on an ad hoc basis. In many cases, the ease of estimation 
is the primary factor affecting the choice of model. Robustness checks that 
analyze the sensitivity of economic results to model specification are often 
omitted. 

One objective of this article is to fill these gaps. Specifically, we illustrate 
how the existing time-varying covariance models differ from each other. We 
propose a way to evaluate the specification of these models, and demonstrate 
that the choice of a multivariate volatility model can affect estimated portfo- 
lio weights and hedge ratios. We also demonstrate that the existing models 
do not capture some important stylized facts about asymmetric volatility 
relationships, and in the spirit of Hentschel (1995) propose a model that 
encompasses the existing models while modeling these stylized facts. 

A second objective of this article is to use a general approach to study 
the time-varying covariance between the stock returns of large and small 
firms. Conrad, Gultekin, and Kaul (1991) found that shocks to large firm 
returns are important to the future dynamics of their own volatility as well 
as the volatility of small firm returns. Conversely, shocks to small firms have 
no impact on the behavior of the volatility of large firms. Our application 
furthers this line of research by examining how robust the Conrad, Gultekin, 
and Kaul result is with respect to model specification by using our proposed 
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encompassing model; extending the study to cover the differential effects 
of large and small firm shocks on the covariance; and extending the model 
to allow for the asymmetric effects of positive and negative shocks on both 
volatility and covariance. 

The organization of this article is as follows: In Section 2, alternative ap- 
proaches to modeling time-varying covariances are reviewed. In Section 3, 
these models are applied to a dataset containing a large-firm portfolio return 
series and a small-firm portfolio return series. Various summary statistics 
and graphical techniques are used to highlight the differences between the 
existing models on the assumed dynamics of large- and small-firm return 
volatilities. In Section 4, a formal testing approach is introduced. The tests 
are applied to the models to evaluate their ability to describe the dynamic be- 
havior of the covariance between large- and small-firm returns. In Section 5, 
an encompassing modeling approach is introduced. The model, which nests 
many existing multivariate GARCH models as special cases, is further ex- 
tended to allow for asymmetric effects in the variance and covariance. The 
general model is then applied to study the time-varying covariance between 
large- and small-firm returns. In Section 6we illustrate the importance of our 
results in portfolio selection and dynamic hedging applications. Section 7 
concludes the article. 

1. Alternative Approaches to Modeling Time-Varying Covariances 

Multivariate GARCH models are among the most widely used time-varying 
covariance models. These include the VECH model of Bollerslev, Engle, 
and Wooldridge (1988), the constant correlation (CCORR) model of Boller- 
slev (1990), the factor ARCH (FARCH) model of Engle, Ng, and Rothschild 
(1990), and the BEKK model of Engle and Kroner (1995). These models 
have been applied to many markets and many asset pricing and investment 
problems. For an extensive summary, see the survey by Bollerslev, Chou, 
and Kroner (1 992). 

To describe these models, we adopt the following notation: 

R;, : the rate of return of asset i from time t - 1 to time t .  

pit :  the expected return of asset i given all information at time t - 1. 

E;,: the unexpected return of asset i (E;, = Rit - pi t ) .  

hiit: the conditional variance of R;, given all information at time t - 1. 

hijt: the conditional covariance between Rit and Rjt given all infor- 
mation at time t - 1. 

H,: the conditional covariance matrix (H, = [hijt]). 



- --- - 
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1.1 The VECH model 
The VECH model is characterized by the following equation:' 

h . .  - w . .  +B . .h . .rjt - r j  r J  l j t - I  + a i j c i t -1E j t -1  for all i, j = 1, . . . , N ,  ( I )  

where wij, B i j ,  and aij, i = 1, . . . , N and j = 1, . . . , N are parameters. 
An advantage of the VECH model is that it is easy to understand - it is 
simply an ARMA model for r i t & j t .  Provided that Bit E (0, 1)  for all i and 
j ,  Equation ( 1 )can also be rewritten as 

where a,* = [Btho+ w i j ~ ~ = o , ~ - 1BG].That is, except for an adjustment term 
a: which ensures that the expectation of h i j t  is the unconditional covari- 
ance between returns i and j ,  the VECH model estimates the covariance 
as a geometrically declining weighted average of past cross products of 
unexpected returns, with lower weights for older observations. 

The VECH model has two practical shortcomings. First, it has N ( N  + 
1 )  parameters. So a 20-asset model will have 630 parameters.2 A second 
implementation problem is that the model might not yield a positive definite 
covariance matrix unless nonlinear inequality restrictions are imposed that 
govern the rates at which the weights are reduced for older observations 
[see Kraft and Engle (1983)l.Without these restrictions, the weights for the 
covariance terms could decline too slowly relative to the weights for the 
variance terms, causing the off-diagonal terms of the estimated covariance 
matrix to become too big relative to the diagonal terms, thus causing the 
matrix to be nonpositive definite. 

1.2 The BEKK model 
The BEKK model represents a solution to the positive definiteness problem. 
It is characterized by the following equation: 

where s2,A, and B are N x N matrices, with s2 symmetric and positive 
definite. In this model, the ijth covariance can be written as 

where E ~ ,cq, E,., and E,  are the unexpected shocks to portfolios p, q, r ,  
and s, and w i j  is the ijth element of s2. The weights in portfolios p and 
q come from the ith and jth columns of the A matrix, and the weights in 

' Some, lncludlng Bollerslev, Engle, and Wooldr~dge (1988), refer to t h ~ s  model as the "d~agonal VECH" 
model 

210 o f  these are contained in the estimate o f  R.  
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portfolios r and s come from the ith and jth columns of the B matrix. If we 
restrict B = KA for some scalar K,  then we can interpret this model as one 
in which there are N factors (or portfolios of assets) driving the conditional 
covariance matrix. 

This model assumes the conditional covariance matrix of asset returns is 
determined by the outer product matrices of the vector of past return shocks. 
Because the second and third terms on the right-hand side of Equation (3) 
are expressed in quadratic forms, the positive definiteness of the conditional 
covariance matrix of asset returns is guaranteed, provided that S2 is positive 
definite. While this model overcomes this major weakness of the VECH 
model, it still has ( 5 1 2 ) ~ ~  + (N/2) parameters. So for N = 20, the BEKK 
model has 1010 parameters, seriously restricting the applicability of the 
BEKK model to many financial systems. 

1.3 The factor ARCH (FARCH) model 
The FARCH model was constructed to solve this large-system applicability 
problem, while retaining the benefits of positive definiteness. The model is 
characterized by the following equation: 

where A. and w are N x 1 vectors, a and /l are scalars, and S2 is a symmetric 
positive N x N matrix. This model is a special case of the BEKK model 
in which the A and B matrices are rank one and equal except for a scale 
factor. More specifically, the BEKK model becomes the FARCH model if 
A = &whf and B = ,@whf. For an N variable system, the number of 
parameters in this model is ( 1 1 2 ) ~ ~  + (5/2)N + 2, which is significantly 
less than that of the general BEKK model. If N = 20, this model has 252 
parameters, 210 of which are used for estimating S2. 

Let R,, = w f R t ,where R, = ( R I t ,. . . , RNr) 'is the return to a portfolio 
formed with a vector of weights w.  The return shock of this portfolio at 
time t - 1 is cpt-1 W / E ~ + ~ ,= and the conditional variance of this portfolio 
at time t - 1 is h,, = wfHtw.Using h, ,  and cl,,+l the FARCH model can 
be rewritten in the following alternative form: 

hijt  = o i j  + hihjhpt  for all i ,  j = 1, . . . , N (5a) 

where o ,  = wfS2w,vij = S2ij - hihjw,,, w;j is the (iJ)th element of S2. 
Intuitively this FARCH model assumes that there is a single portfolio whose 
variance is driving all the conditional variances and covariances of asset 
returns. This common portfolio, or factor, follows a GARCH process. In 
the one factor model in Ng, Engle, and Rothschild (l992), R,, is taken to be 
the market return. Under this assumption, the entire conditional covariance 
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matrix of stock returns is driven by the conditional variance of the market 
portfolio. 

The key difference between the FARCH model and the BEKK model 
is the number of factors that are driving the conditional covariance matrix. 
If there are N factors driving the covariance matrix, the BEKK model is 
implied. If there is one factor, the FARCH model is implied. The extension 
to k factors, 1 < k < N, is obvious, and is suggested in Ng, Engle, and 
Rothschild (1992). 

1.4 The constant correlation (CCORR) model 
The CCORR is another way to parsimoniously model a time-varying co- 
variance matrix. It restricts the conditional covariance between two asset 
returns to be proportional to the product of the conditional standard devia- 
tions. In this model the conditional correlation coefficient of the two asset 
returns is time invariant. Specifically the model is 

It..r r t  - o . . + p . . h . .- r r  I + i i i t  for all i = 1, . . . , N2 (621) 

17ijt = p;j(l/hiitl/hjjt) for all i # j. (6b) 

The CCORR model is positive definite if and only if the correlation 
matrix [pij] is positive definite. The number of parameters in this model is 
only (112) N~ + (7/2)N. For N = 20, this is 270. 

2. Properties of the Four Multivariate GARCH Models 

Each of the four models presented in the previous section implicitly imposes 
a different set of restrictions on the variance and covariance processes. We 
illustrate these differences with a bivariate system of large-firm and small- 
firm portfolio returns obtained from the dataset used by Conrad, Gultekin, 
and Kaul(1991)."he sample period is from July 1962 to December 1988, 
for a total of 137 1 weekly observations. 

Since we are not interested in the behavior of the time-varying mean 
returns in this study, we simply model the mean of the return vector as a 
10th order vector autoregression (VAR) with 10 lags of a threshold term. 
Specifically, the model is (for i = 1,2)  

Throughout this article, i = 1 refers to the small-firm portfolio and 
i = 2 refers to the large-firm portfolio. The threshold terms are added to 

'	Since our main focus is on the effect of last period's return shocks on current volatility, we replaced the 
GARCH terms in all the models except CCORR with [b,,h,,,-11,where b,, = bii.We chose not to make 
this modification to the CCORR model because it would invalidate the essential feature of the CCORR 
model, which is that correlations are constant. 
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ensure that any asymmetric effects found in the variances and covariances 
are not caused by a misspecification in the mean. The estimation is done 
in two steps. First we estimate the mean equation to get the residuals & I ,  

and F;?,, then we estimate the conditional covariance matrix parameters 
using maximum likelihood, treating and F;?, as observable data4 The 
block diagonality of the information matrix under this setup guarantees that 
consistency and efficiency are not lost in such a procedure. 

The four multivariate GARCH models give very different variance and 
covariance estimates. For evidence of this, consider first the summary statis- 
tics of the variance and covariance series obtained from the four models. 
These summary statistics, including the mean, standard deviation, rnini- 
mum, and maximum, are reported in Table 1. The covariances obtained 
from the BEKK model and the FARCH model tend to be slightly higher 
and more volatile than those from the VECH model and the CCORR model. 
The BEKK model in particular produces a broad range of covariance es- 
timates, as evidenced from the large maximum-minimum range. Focusing 
next on the variance estimates, the VECH and CCORR model estimates for 
the small-firm variance series are more volatile than those from the FARCH 
and the BEKK models. In contrast, the VECH and CCORR estimates of the 
large-firm variance series are less volatile than the FARCH and the BEKK 
estimates. 

For further evidence that the four models can give very different variance 
and covariance estimates, consider the correlations between the estimates 
from the different models, reported in Table 2. The first panel of Table 2 
gives the correlations between the small-firm variance estimates obtained 
from the four models. The second panel gives the correlations between the 
large-firm variance estimates. The third panel gives the correlations between 
the covariance estimates obtained from the four models. The correlations 
in panel 2 all exceed 0.99, suggesting that the four models give very sim- 
ilar large-firm variance estimates. Therefore, if we are only interested in 
estimating the large-firm variance in this dataset, the choice of models is 
unimportant. This conclusion does not hold for the small-firm variance and 
the covariance. The small-firm variance estimates obtained from the FARCH 
and BEKK models are not highly correlated with those obtained from the 
VECH and CCORR models. In fact, the correlation between the small- 
firm variance estimates obtained from the FARCH model and the CCORR 
model is only 0.366. This suggests that these models are producing sub- 
stantially different small-firm variance estimates. Similarly, the correlations 
between the covariance estimates from all combinations of models are less 
than 0.89. 

"his follows the two-step approach of Pagan and Schwert (19901, Gallant, Rossi, and Tauchen (1992), 
and Engle and Ng (1993). 
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Table 1 
Summary statistics of estimated variance and covariance series 

Model Variable Mean SD Minimum Maximum 

Small-firm variance 

7.43 28.97 0.00 825.45 
VECH h l l ,  7.73 6.31 3.82 104.98 
CCORR h l l ,  7.91 7.08 3.54 117.60 
FARCH hll ,  7.51 4.14 2.87 33.24 
BEKK hll ,  7.53 4.91 2.64 50.67 

Large-firm variance 

E;, 3.93 8.12 0.00 147.87 
VECH h n ,  -- 3.89 2.58 1.10 21.53 
CCORR h22, 3.96 2.78 0.98 23.49 
FARCH h22, 4.12 3.18 0.74 27.08 
BEKK hzzr 4.16 3.20 0.76 26.15 

Covariance 

2.61 8.59 -45.44 167.55 
VECH h12, 2.33 1.49 0.30 17.59 
CCORR h12, 2.47 1.48 0.91 15.60 
FARCH hl2, 2.79 2.42 0.30 21.71 
BEKK h l z r  2.77 2.66 0.25 30.7 1 

This table gives summary statistics for the variance and covariance 
series estimated from the four multivariate GARCH models discussed 
in the article. All four models were applied to the same dataset of 
large-firm and small-firm portfolio returns. E L ,is the return shock to 
the small-firm portfolio and .?zl is the return shock to the large-firm 
portfolio. h 1 ,  is the estimated variance of the small-firm portfolio 
returns. h22r is the estimated variance of the large-firm portfolio 
returns. h 1 2 ,  is the estimated covariance between the small-firm and 
large-firm portfolio returns. 

Judging from these results, it seems clear that the four models can pro- 
duce substantially different covariance matrix estimates. These differences 
could affect the results of asset pricing exercises and portfolio management 
applications, making the choice of the model very important. Given this 
conclusion, the obvious next question is: What causes the differences in 
the variance and covariance estimates? To answer this, we introduce a mul- 
tivariate generalization of the graphical "news impact curve" from Engle 
and Ng (1993). Univariate applications, which involve plotting the condi- 
tional variance against last period's shocks, appear in Engle and Ng (1993) 
and Hentschel(1995). The multivariate generalization plots the conditional 
variance and covariance against large- and small-firm shocks from the last 
period, holding the past conditional variances and covariances constant at 
their unconditional sample mean levels. We will call these "news impact 
surfaces." 

Specifically, let zt-1 denote the vector of inputs (known at time t - 1) 
for the determination of h i j t ,  excluding &it- 1 and &jt-1 .  Also, let Z denote 
the unconditional mean of 2,-1. The news impact surface for hijt is the 
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Table 2 
Correlations of estimated second moments from alternative models 

Panel I: Small-firm portfolio variance series 

VECH CCORR FARCH BEKK 

VECH 1.000 
CCORR 0.999 1 .OOO 
FARCH 0.367 0.365 1.000 
BEKK 0.642 0.640 0.834 1 .OOO 

Panel 2: Large-firm portfolio variance series 

VECH CCORR FARCH BEKK 

VECH 1.000 
CCORR 0.999 1.000 
FARCH 0.999 0.999 1.000 
BEKK 0.954 0.954 0.955 1.000 

Panel 3: Covariance series 

VECH CCORR FARCH BEKK 

VECH 1 .OOO 
CCORR 0.876 1.000 
FARCH 0.748 0.785 1 .OOO 
BEKK 0.752 0.719 0.885 1 .OOO 

Panel 1 of this table gives the correlation matrix of the small-firm variance 
series estimated from the four multivariate GARCH models discussed in the 
text. Panel 2 gives the correlation matrix of the large-firm portfolio variance 
series estimated from these same models. Panel 3 gives the correlation matrix 
of the covariance series estimated from these models. 

three-dimensional graph of the function: 

The news impact surfaces generated by the four models for the covariance 
h lz t ,  the small-firm variance h 1 I,, the large-firm variance h22,, and the cor- 
relation h 12t/l/h1 1,1/h22t are plotted in Figures 1 ,2 ,3 ,  and 4, respectively. 

Figure 1 shows that, in contrast to the univariate model comparisons in 
Hentschel (1995), the different models imply substantially different news 
impact surfaces for the covariance, even though they are fitted to the same 
dataset. These differences are caused by the different functional forms as- 
sumed by each of the specifications. For instance, under the VECH model, 
past return shocks to the large- and small-firm portfolios enter into the co- 
variance equation in the cross-product form ( F  I ,_1 ~ 2 , -I ). Hence when the 
shocks are both large but of opposite signs, the covariance can be small 
or even negative. This is evident from the saddle shape of the VECH news 
impact surface in Figure 1. On the other hand, under the CCORR model, the 
covariance is proportional to the product of the standard deviations. Thus 
when shocks are large, regardless of their signs, the standard deviations and 
hence the covariance will be large. Therefore the news impact surface for 
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VECH BEKK 

FARCM CCORU 

Figure 1 
News impact surfaces for covariances 
The figures give the news impact surfaces for the covariance between small-firm and large-firm return 
shocks under the VECH model. the BEKK model. the FARCH model. and the CCORR model. 

the CCORR model is bowl-shaped. For the FARCH model, since the co- 
variance is proportional to the variance of a factor which is loaded primarily 
on the large-firm portfolio, the FARCH covariance news impact surface is 
a U-shapd surface along the axis for the large-firm return shock. 

These general shapes are not specific to the dataset analyzed here. For 
any application, the impact on covariances of opposite-signed shocks in the 
CCORR model will be substantially different than in the VECH model. 
Also, the news impact surface for covariances from a FARCH model will 
always be U-shaped, with the data determining the direction the parabola 
points. Ignoring these differences when choosing which multivariate 
GARCH model to employ could lead to a seriously misspecified model. 

Figure 2 shows that there are also significant differences between the 
news impact surfaces for the variance of the small-firm portfolio obtained 
from the four different models. The VECH model and the CCORR model 
restrict the variance of the small-firm portfolio to depend only on the square 
of the return shock for the small-firm portfolio. This restriction forces the 



Modeling Asymmetric Con~ovements of Asset Returns 

VECH SEKK 

F i r e  2 
News impact surfaces for small-firm variances 
The figures give the news impact surfaces for the small-firm variances under the VECH model. the BEKK 
model. the FARCH model. and the CCORR model. 

large-firm return shock to have no effect on the small-firm variance, thereby 
restricting the news impact surfaces to be flat along any line parallel to the 
large-firm axis. On the other hand, the news impact surface implied by the 
FARCH model suggests that it is the large-firm return shock which has 
the biggest impact on the variance of the small firm portfolio, while the 
news impact surface from the BEKK model suggests that both large- and 
small-firm shocks matter. 

Notice also that the news impact surface generated for the small-firm 
variance (Figure 2) and for the covariance (Figure 1) from the FARCH 
model are identical, except for a scale factor. This restriction must hold 
because the same portfolio drives all the elements of the FARCH covariance 
matrix. 

Consider next the news impact surfaces for the large-firm variances in 
Figure 3. The four models give almost identical large-firm news impact 
surfaces, suggesting that when modeling large-firm variances, these four 
models are very similar. But notice also that the large-firm news impact 
surfaces from the CCORR and VECH models point along the opposite axes 
from the small-firm variance surfaces for these same models. This result 
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VECH BEKK 

Fseum 3 
News impact surfaces lor large-firm varlpnces 
The figures give the news impact surfaces for the large-finn variances under the VECH model. the BEKK 
model. the FARCH model. and the CCORR model. 

is caused by restrictions in the underlying models. Similarly, restrictions 
in the FARCH model force the FARCH news impact surfaces to all point 
along the same axis. 

Finally, we provide the news impact surface for the correlations in Fig- 
ure 4. The surface from the CCORR model is flat, because correlations in 
this model are not a function of the information set. However, notice that 
the news impact surfaces for the correlations from the FARCH model are 
also quite flat. This is not surprising, because in a one-factor model the 
correlation is 

The same dynamics are driving both the numerator and denominator of 
this expression, leaving only minimal dynamics in the ratio. In a two-factor 
model, one would expect more dynamics in the correlations. 

Based on the above observations, we can conclude that (i) the different 
covariance matrix models impose significantly different restrictions on the 
dynamic behavior of the variances, covariances and correlations; and (ii) an 
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Fiy- 4 
News Impact surfaces for wcomlPtkm 
The figum give the news impact surfaces for the correlation hetween small-firm shocks and large-firm 
shocks under the VECH model, the BEKK model. the FARCH model, and the CCORR model. 

important difference between the models is the way they allow past shocks 
of asset returns to affect the variances and covariances. These results can- 
not be overemphasized and are particularly important for applications that 
rely crucially on covariance estimates, such as portfolio choice problems, 
hedging problems, and asset pricing problems. Very careful consideration 
should go into the choice of a multivariate GARCH model before estimation 
is conducted, and thorough specification testing on the estimated model is 
essential before conclusions are made based on the model. It is therefore 
valuable to have a set of specification tests available, and it is to this that 
we now turn our attention. 

3. Robust Conditional Moment Tests 

To test the validity of a model, a natural approach is to compare the ex post 
cross-product matrix of the vector of residuals to the estimated covariance 
matrix. For the covariance case, this is like superimposing a scatter plot of 
the cross-product of residuals (a plot of Ei,&j, against si,-l and &jt-I ) on 
the three-dimensional graph for the covariance news impact surface. Rec- 
ognizing that the covariance news impact surface is a graph of h i j ,  against 



&it- 1 and &it- 1 and recognizing that the unconditional expectation of sit&jt 

is h i j t ,we 'can test the models by measuring the vertical distance between 
& i t & j t  and hijt and studying whether these distance measures follow some 
specific patterns. For instance, if the model gives a covariance news impact 
surface that is too low whenever &it- 1 is negative, then the vertical distance 
between &it&j t  and hijt will tend to be positive when &it- l  is negative. 

Based on this idea, we define a "generalized residual" uijt to be the 
(i,j)th element of E,E;  - Ht SO that uijt = &it&jt  - hi j t .A generalized 
residual is the distance between a point on the scatter plot of sit&jtfrom 
a corresponding point on the news impact surface. If the model is correct, 
El-I ( u i j t )= 0, thus uijt should be uncorrelated with any variable known 
at time t - 1. This observation gives us a natural way to identify mis- 
specification by examining whether uijt is correlated with variables known 
at time t - 1. These variables are called misspecification indicators. The 
choice of misspecification indicators is very important because different in- 
dicators can target different forms of misspecification. Inappropriate choice 
of misspecification indicators will reduce the ability of the test to detect 
misspecifi~ation.~ 

In this regard, the graphical representation of the news impact surface 
provided above has provided useful hints for finding suitable misspecifica- 
tion indicators. Knowing that a major difference between the models is their 
asymmetric property, a beneficial approach is to partition the ( E ; ~ - I ,& j t - l )  

space in a way that can highlight the asymmetric property. Misspecification 
indicators can then be built based on this partition. 

A natural way is to partition the & j t - l )  space into four quadrants 
corresponding to the following sign combinations of 1 ,  & j t - l  ): (-, -), 
(-, +), (+, -), and (+,+).Let I (.)be an indicator function that equals one 
if the argument is true and zero otherwise. The misspecification indicators 
corresponding to such a partition are 

Related to these, we can consider the "sign indicators," 

See Brenner, Harjes, and Kroner ( I  996) for a detailed description of these types of tests and an illustration 
in a univariate GARCH framework. 
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which will allow us to test for traditional leverage-type asymmetries in the 
data. 

As pointed out by Engle and Ng (1993), the magnitudes of the shocks can 
also play an important role. Furthermore, the effect of the size of a shock on 
the variances and covariances might also depend on the sign of the shock 
and possibly the sign of other shocks. To capture such possibilities, we 
scale the sign indicators by the size of the shocks. This yields another set 
of misspecification indicators: 

When N = 1, the entire set of 10 indicators reduces to indicators that 
match the sign and size-bias tests introduced in Engle and Ng (1993). 

To complete the testing design, we borrow the robust conditional mo- 
ment test framework of Wooldridge (1990). A test statistic that is robust to 
the conditional distribution used when estimating the multivariate GARCH 
model is constructed as 

where hgt-l is the residual from a regression of the misspecification indi- 
cator xgt-l on the derivatives of h i j t  with respect to the parameters of the 
model. Under general regularity conditions, Wooldridge (1990) shows that 
C,.,,, has an asymptotic x2(1) distribution. 

The robust conditional moment test statistics can be computed easily 
from two auxiliary regressions. The first regression is xgt-l on the deriva- 
tives of h i j t  with respect to all parameters of the null model. The second 
regression is a vector of ones on the product ui j thgt-1, where hgt-1 is the 
residual from the first regression. The test statistic is T times the uncentered 
R' from the second regression. 

The test statistics for the covariance between the small-firm and the large- 
firm returns are reported in panel A of Table 3.6 To highlight the usefulness 
of the tests, the Ljung-Box tests for serial correlation in the normalized 
cross-product of residuals, E ; , E ~ ~ /h i j t ,  are reported in panel B of Table 3. 
The Ljung-Box test is a popular diagnostic for models with time-varying 
conditional second moments because it addresses whether the model has 
adequately captured the serial correlation in the second moments. 

As can be seen from Table 3, the Ljung-Box tests do not reject any of 

'The final column of Table 3, labeled ADC, will be discussed shortly. 
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Table 3 

Diagnostic tests for covariance specification 


Panel A: Robust conditional moment tests 

VECH CCORR FARCH BEKK ADC 

I ( & I ~ - I< 0) 4.85 5.32 4.91 4.85 -


I (~2 r - I< 0) 16.22 17.63 16.34 16.27 5.48 

I ( E ~ ~ - ~< 0; 4 0) 5.88 10.95 6.40 6.45 -

I (EI , - I  < 0; EZ,-I > 0) - 6.84 - - -


I (&I , - I> 0; E ~ , - I  < 0) - - - 4.10 -


I > 0 > 0 11.09 10.46 12.06 12.67 -


Panel B: Ljung-Box tests for serial correlation in E ~ , E ~ ~ / ~ ~ ~ ,  

VECH CCORR FARCH BEKK ADC 

Panel A gives the robust conditional moment test statistics for each of the five 
models estimated. The misspecification indicators are listed in the first column 
and the remaining five columns give the test statistics for each of the five models. 
This statistic is distributed X: and has a 95% critical value of 3.84. Only those 
statistics that are significant at the 5% level are reported. E ~ is the return shock ~ ~ 

to the small-firm portfolio, and E ~ is the return shock to the large-firm portfolio. ~ ~ 

Panel B gives the Ljung-Box test statistic for serial correlation in the standardized 
cross-product of residuals from these five models. Q ( r )is the Ljung-Box statistic 
for rth order serial correlation. The 5% critical levels for Q(6), Q(12), and Q(l8)  
are 12.6, 21 .O, and 36.4, respectively. 

the models. This is hardly surprising given that we rarely see Ljung-Box 
tests rejecting any variations of GARCH models in the literature. However, 
looking at our robust conditional moment tests, the message is very different. 
Each model is strongly rejected. The test statistics indicate that all models 
fail to capture the asymmetric response of covariance to both large-firm 
and small-firm portfolio shocks. As evidenced by the strong test statistics 
arising from the I ( ~ 2 ~ -< 0) indicator, the models are especially bad 1 

at capturing the asymmetric relationship between covariances and shocks 
to the large-firm portfolio. Also, judging from the test statistics, there are 
more rejections when the shocks are large than when the shocks are small, 
suggesting that the size of the shocks matters. 

There are more rejections when both &I ,  and ~2~ are negative and when 
both are positive. There are two potential explanations for this. First, this 
might be due to the high correlation between small- and large-firm returns 
(their correlation is 48%), which leads to more observations and therefore 
higher power in the (+,+) and (-, -) quadranb7 And two, it could arise 

'About one-third of the observations are in each of the (+, +) and (-, -) quadrants, and about one-sixth 
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because the asymmetric predictability is more pronounced when the com- 
mon shock is large. Intuitively, any big shock (whether positive or negative) 
is likely to be shared by both the large firm and small firm portfolios, leading 
to large return shocks of the same sign. So the observations that drive the 
asymmetries are likely to be located in the (+,+) and (-, -) quadrants. 

One important conclusion from these results is that we should not place 
too much confidence in statistically insignificant Ljung-Box statistics when 
evaluating GARCH models. Even badly misspecified models can capture 
the serial correlation in the second moments and give insignificant Ljung- 
Box test statistics. 

4. A General Dynamic Covariance (GDC) Model 

The robust conditional moment test results call for a more general model 
with an ability to capture the asymmetric effects explicitly. Instead of work- 
ing on extensions of each of the four models and comparing the large num- 
ber of possible extensions, we adopt a more structured approach, similar to 
Hentschel(1995). First, we introduce a general dynamic covariance matrix 
model that can nest many of the existing models. Then we generalize this 
model to include asymmetric effects. The resulting asymmetric covariance 
matrix model encompasses various asymmetric extensions of the four mod- 
els. Model selection is much easier under this approach. The specification 
of the basic encompassing model is as follows. 

4.1 A general dynamic covariance (GDC) matrix model -Definition 

where o is the Hadamard product operator (element-by-element matrix mul- 
tiplication) and 

D t  = [ d i j r ] ,  d i i t  = ,/Qiit for all i ,  d i j t= 0 for all i # j 
0, = [Qi j t ]  

R = [ r ; j ] ,  q 5 i i = 0  foral l i  

cD = [ q 5 i j ] ,  q5i; = 0 for all i 

for all i ,  jQ i j t  = o i j  + b ' H t - l b j  + a j ~ ~ - ~ e : - ~ a j  (9) 

and 

a ; ,  b i ,  i = 1 ,  . .. , N are N x 1 vectors of parameters, 

o ; j ,  p ; j ,  and q 5 i j ,  i ,  j = 1, . . . , N are scalars with SZ = [w i j ]positive 

definite. 


in each of the other two quadrants. 
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The GDC model has two components, the first term, Dl R D,, is like the 
constant correlation model, but with the variance functions given by that of 
the BEKK model. The second term, @ o 0,,has zero diagonal elements, but 
has off-diagonal elements given by the BEKK-type covariance functions, 
scaled by the @ij  parameters. 

To further clarify the model structure, we can write down the expressions 
for the elements of H, directly. Specifically, under the GDC model, 

hiit = Qijt for all i 

h . .  + @ ; j ~ i j r  for all i # j,L J ~= pij J Q i i t J Q j j t  

where, Qi j f i ,j = 1 ,  . . . , N are given by the above BEKK form (Equation 9). 
The GDC model is therefore a hybrid of the CCORR model structure and 

the BEKK model structure. An interesting property of this model is that it 
encompasses the four multivariate GARCH models discussed above. This 
encompassing result is given in Proposition 1. 

Proposition 1. Consider the following set of conditions: 

( i )  pij = 0for all i # j .  
(ii) a; = ail; and bi = pi ii for all i ,  where 1; is the ith column of an N x N 

identity matrix, and a;  and pi, i = 1 ,  . . . , N are scalars. 
(iii) @ij = 0for all i # j .  
(iv) @;j = 1 foralli  # j .  
( v )  A 	 = a ( w h l )  and B = p(whl) ,  where A = [ a l ,. . . ,a N ] ,  B = 

[bl ,. . . ,b,,], w and h are N x 1 vectors, and a and p are scalars. 

The GDC model will reduce to the different multivariate GARCH models 
under different combinations of these conditions. Spec@cally, the GDC 
model will become a restricted VECH model (with the restrictions pij = 
pi;p j j  and aij = a i ; a j j )  under conditions ( i )  and (ii), the CCORR model 
under conditions (ii) and (iii), the BEKK model under conditions ( i )  and 
(iv), and the FARCH model under conditions (i), (iv) and (v). 

Proo$ See Appendix for all proofs. 

This encompassing property makes the GDC model a useful and attrac- 
tive framework for estimating time-varying covariance matrices and for 
comparing and testing existing multivariate GARCH models. The general- 
ity of the GDC model also provides a natural ground for an extension that 
permits asymmetric effects in both variances and covariances. An exten- 
sion of the GDC model following the approach of Glosten, Jagannathan, 
and Runkle (1993)is given below. 
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4.2 Asymmetric Dynamic Covariance (ADC) Matrix Modell -
Definition 

Let vir = max[O, -,sir] and qt = [q ,,. . . , qNl] ' ,the ADC model is defined 
as 

H, = D,RD, + @ o O,, 

where 

D, = [dij,],  diit = JQiitfor all i ,  dij, = 0 for all i # j 
0, = [ Q i j t l  

R = [ r i j ] ,  r;i = 1 for all i ,  r;j = p;j for all i # j 
@ = [q5 i j ] ,  q5ii for all i 

Qijt  = o i j  +b:H,-lbj +a,!st-lsi-,aj +gjqt-lq:-lgj for all i ,  j (10) 

and 

ai, b i ,and g;, i = 1 ,  . . . , N are N x 1 vectors of parameters, 

oij ,  pij, and q5ij, i ,  j = 1 ,  . . . , N are scalars. 

The essential difference between the ADC model and the GDC model is 
the addition of the term gj vr- vi- I gj in the equation for Qijt  (Equation 10). 
The asymmetric dynamic covariance matrix model nests some natural ex-
tensions of the four multivariate GARCH models that allow for asymmetric 
effects in the variances and covariances. These are summarized in Propo-
sition 2. The proof for Proposition 2 follows directly from the proof for 
Proposition 1 and hence is not given to conserve space. 

Proposition 2. Consider thefollowing set of conditions: 

( i)  p;j = 0for all i # j 
(ii') a; = a;ii, bi = p;ii,  and g, -- y;i;for all i ,  where 1;  is the ith column 

of an N x N identity matrix, and a; ,  pi, and y;, i = 1, . . . , N are 
scalars 

(iii) q5ij = 0for i # j 
(iv) q5ij = 1 for all i # j 
( v f )A = a(whf ) ,B = p(wh1),and G = y (wh')where A = [ a l ,. . . ,a ~ ] ,  

B = . . . ,b ~ ] ,  = [gl ,. . . ,gN] ,w and h are N x 1 vectors,[ b ~ ,  and G 

and a ,  p, and y are scalars. 


TheADCmodel will reduce to the different asymmetricmultivariateGARCH 
models under different combinations of these conditions. SpeciJicallythe 
ADC model will become an asymmetric VECH model under conditions ( i )  
and (iif),an asymmetric CCORR model under conditions (ii')and (iii),an 
asymmetric BEKK model under conditions ( i )and (iv),and an asymmetric 
FARCH model under conditions (i),(iv)and (vf).  



Tlze Review of Firznrzcinl Studies / I I rl  4 199811 

The exact form of these specialized multivariate asymmetric models are 
given below: 

Asymmetric VECH: 

2 2 2 2 
hiit = Wii +~ Z h i i t - I+ a i  + Y~qir-l 

for all i (GJR asymmetric variance function) 

hJ J = + . , w . .( J  I J'/3./3.hijt1 J + + i j a i a j ~ i t - ~ & j t - ~~ I J  + 4, + + i j l / i l / j q i t - ~ ~ j t - ~  

foral l i  # j. 

Asymmetric CCORR: 

h .  - o..+ p 2 h . ,  2 2 2 2 
rrt - r r  l i t - I  +a;& ; / - I  + Yi V j t - 1  

for all i (GJR asymmetric variance function) 

hij t  = p i j l /h i i t l /h j j t  for all i # j. 

Asymmetric BEKK: 

Asymmetric FARCH: 

hijr = a;j + hihjh,, for all i 
2 2 


h17t = up+ B h p t - I  + a E p f - l  + Y ' l p r - l  

where 

hpt = w ' H ~W ,  E p r  -- w ' E ~ ,ql,t = wlq t ,  and aij - o;j- hihjw'Qw 

The above multivariate asymmetric GARCH models are natural exten- 
sions of their standard counterparts. The asymmetric VECH and asymmetric 
CCORR models have variance functions given by the Glosten, Jagannathan, 
and Runkle (GJR) model instead of the standard GARCH(1, 1) model. The 
asymmetric VECH also allows a cross-product term of the negative shocks 
to determine the covariance. An implication of this is that the covariance 
will be higher when there is bad news for both firms. The asymmetric BEKK 
extends the standard one by having an additional quadratic form that is de- 
pendent on the outer product of the vector of negative return shocks. Finally, 
the asymmetric FARCH model utilizes a bad news portfolio, q p ,produced 
by taking a weighted average of the individual asset bad news with the 
weights being the original factor weights. 

To examine the performance of the ADC model and to further study the 
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Table 4 

ADC model estimation results 


Parameter Estimate Standard Error 

B II 0.868 0.014 
B12 0.495 0.24 1 
B2z 0.884 0.015 

This table gives the maximum likelihood estimates for the ADC model: 

h,i, = Qt i ,  for all i = 1, 2 

+ g:11,-17 1 ; - 1  g,j for all i, j 

Heteroskedasticity-consistent standard errors are reported. i = I refers 
to the small-firm portfolio and i = 2 refers to the large-firm portfolio. 

dynamic relation between large- and small-firm returns, we apply the ADC 
model to our large- and small-firm return series. The estimation results are 
reported in Table 4. With these results, the first question to ask is whether the 
estimated ADC model would reduce to one of the more specialized models. 
For this, we can test the conditions given in Proposition 2. The t statistic 
for the hypothesis p l 2  = 0 is 2.52. Thus condition (i) is rejected at the 5% 
level. The t statistic for 4512 = 0 is 3.84. So condition (iii) is also rejected. 
The t statistic for 4512 = 1is 2.29. Thus condition (iv) is also rejected. These 
results indicate that the estimated ADC model is statistically different from 
any one of the specialized models. Also, the rejection of 4512 = 0 implies 
that there exists an asymmetry in the covariances that is not driven by the 
asymmetry in the variances. 

We next address whether the asymmetric effects are important for the 
variances and covariances. For this, the results in Table 4 show that both g 2 l  

and g22  are statistically significant. Since the gz vector captures the negative 
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Figure 5 
News impact surfaces for AM3 model 
The figures give the news impact surfaces for the small-firm variance. the large-firm variance. the 
covariance between small-firm and large-firm shocks, and the correlation bctween small-firm shocks 
and large-tirm shocks under the ADC model. 

shocks of the large-firm portfolio (as i = 2 is for the large firm), the results 
indicate that the sign of the large-firm return shocks is more important than 
the sign of the small-firm return shocks. 

Such effects can also be seen more clearly by inspecting the variance 
and covariance news impact surfaces for the ADC model. These graphs are 
given in Figure 5. Panel 1 of Figure 5 indicates that the small-firm portfolio 
variance is only mildly affected by news to the small-firm portfolio. Instead, 
bad news to the large-firm portfolio has a dominant impact on small-firm 
variances. This should not be surprising, given existing results in the liter- 
ature. For example, Nelson (1990) and Glosten, Jagannathan and Runkle 
( 1993) demonstrate that bad news has a bigger impact on subsequent volatil- 
ity than good news, and Conrad, Gultekin, and Kaul (1991) demonstrate 
that shocks to large-firm returns affect future small-firm return volatility. 
Putting these two results together (as our model does), we find that bad news 
to large firms affects small-firm volatility. The advantage the AM3 model 
has over these other models is that it nests all these potential asymmetric 
relationships and spillovers in one model. 
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Consistent with Conrad, Gultekin, and Kaul(1991), panel 2 reveals that 
the variance of the large-firm portfolio is unaffected by small-firm shocks. In 
contrast, volatility of the large-firm portfolio is responsive to its own news, 
especially its own bad news. Panel 3 indicates that there is also an interesting 
asymmetric effect in the covariance which has not been documented before. 
Specifically, the covariance between large- and small-firm returns is higher 
following a negative shock to the large-firm portfolio, while it is almost 
unaffected by shocks to the small-firm portfolio. Panel 4 indicates that these 
asymmetries in the covariance are not driven entirely by the asymmetries in 
variances, because, for example, positive small-firm shocks have a different 
impact on correlations than negative small-firm shocks. Panel 4 also reveals 
that shared negative shocks have much stronger impacts on correlations 
than shared positive shocks. 

Finally, to check for misspecification we apply our robust conditional 
moment tests to the model and report the results in the final column of 
Table 3. The only rejection observed is that the ADC model does not fully 
capture the asymmetric relation between large-firm shocks and covariances. 
In stark contrast to the other multivariate GARCH models we examined, 
the ADC model is well-specified along all other dimensions examined. The 
ADC model fits the data well. 

5. Illustration of Economic Importance 

Estimating the right time-varying covariance matrix is essential for asset 
pricing, portfolio selection, and risk management. To illustrate the impor- 
tance of the covariance matrix to these types of financial problems, we 
applied our results to two problems. 

First, consider the problem of calculating the optimal fully invested port- 
folio holdings subject to a no-shorting constraint. This application is illus- 
trative of the kinds of problems faced by portfolio managers when deriving 
their optimal portfolio holdings. In order to avoid forecasting expected re- 
turns, we assume here that the expected returns are zero, making the problem 
equivalent to estimating the risk-minimizing portfolio weights. Define 

Then it is easy to show that, assuming a mean-variance utility function, the 
optimal portfolio holdings of the small-firm portfolio are 

and the optimal holdings of the large-firm portfolio are 1 - w:. As shown 
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Table 5 
Portfolio comparisons from the estimated models 

Panel A: Optimal fully invested small-firm portfolio weights 

VECH CCORR FARCH BEKK ADC 

Averages 0.222 0.232 0.209 0.222 0.181 

VECH 1.000 
CCORR 0.977 1.000 
FARCH 0.698 0.702 1.000 
BEKK 0.796 0.721 0.361 1.000 
ADC 0.571 0.542 0.121 0.623 1.000 

Panel B: Optimal riskminimizing large-firm hedge ratios 

VECH CCORR FARCH BEKK ADC 

Averages 0.666 0.692 0.639 0.640 0.753 

VECH 1.000 
CCORR 0.728 1.000 
FARCH -0.500 -0.553 1.000 
BEKK 0.393 0.047 0.403 1.000 
ADC -0.010 0 . 1  10 0.656 0.516 1.000 

Panel A gives summary statistics for the optimal small-firm 
portfolio weights in a fully invested, no-shorting portfolio. The 
optimal large-firm weights are one minus the optimal small-firm 
weights. The first row gives the average weight over the sample 
period and the remaining rows give the correlation matrix of optimal 
weights. Panel B gives summary statistics for the risk-minimizing 
hedge ratio in a problem where the large-firm portfolio is used to 
hedge against small-firm return volatility. A hedge ratio of 0.67 
means that the investor would short $67 worth of the large-firm 
portfolio to hedge against a long position of $100 in the small-firm 
portfolio. As in panel A, the first row gives the average hedge ratios 
and the remaining rows give the correlation matrix of optimal hedge 
ratios. 

in panel A of Table 5, all the models result in very similar average optimal 
weights, with the averages ranging from 0.18 (ADC) to 0.22 (VECH and 
BEKK). However, the correlations between these portfolio weights are low, 
typically about 70%. So the optimal portfolio will depend on the covariance 
model chosen, meaning that portfolio managers would have to be very 
careful which covariance model they select, because the model matters. 

Second, consider the problem of estimating a dynamic risk-minimizing 
hedge ratio using multivariate GARCH models. Several applications of this 
exist in the literature. For example, Kroner and Claessens (1991) and Kroner 
and Sultan (1993) use the CCORR model and Baillie and Myers (1991) use 
the VECH model. To minimize the risk of a portfolio that is long $1 in 
small-firm portfolio, an investor should short $p of the large-firm portfolio, 
where the "risk minimizing hedge ratio" ,l3 is 
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The summary statistics of the estimated hedge ratios from the different 
covariance models are given in panel B of Table 5. The average hedge ratio 
is about 0.70 for all the models, but the correlations between the hedge ratios 
are strikingly low. In fact, the correlation between the FARCH and CCORR 
hedge ratios is -0.55. Clearly the choice of models will seriously affect the 
estimated hedge ratios. Of importance, the formula for the optimal hedge 
ratio is the same as that for the market B if the second asset is the market. 
This suggests that any application that estimates time-varying ps  must also 
pay careful attention to the model selection process. 

6. Conclusion and Summary 

Existing multivariate models allowing the covariance matrix to be time 
varying generally impose strong restrictions on how past shocks can affect 
the covariance matrix. Yet these restrictions are seldom compared and tested. 
Furthermore, asymmetric/leverage effects have been found in variances, but 
few studies have examined such effects in covariances, even though there 
are good reasons to believe that they exist and have important implications 
for portfolio management. 

We filled these gaps by demonstrating the differences between several 
popular multivariate GARCH models; introducing a set of robust condi- 
tional moment tests to detect misspecification in the dynamics of the co- 
variance matrix, with special emphasis on the asymmetric effects in the 
covariances; and introducing a general dynamic covariance matrix model 
which nests various existing models as special cases. More specifically, our 
model nests the constant correlation model of Bollerslev (1990), the FARCH 
model of Engle, Ng, and Rothschild (1990), the BEKK model of Engle and 
Kroner (1995), and the VECH model of Bollerslev, Engle, and Wooldridge 
(1988). We also introduced a generalization of the encompassing model 
that allows for asymmetric effects in the variances and covariances. This 
asymmetric dynamic covariance matrix model nests various asymmetric 
extensions of the four existing models. 

We apply the asymmetric dynamic covariance matrix model to weekly 
returns from a large-firm portfolio and a small-firm portfolio to examine 
the dynamic relation between large- and small-firm returns. We found that 
all four existing models are misspecified, especially in the dynamics of the 
covariance. Our results confirm the general conclusion of Conrad, Gultekin, 
and Kaul (1991) in a more general setting. That is, large-firm returns can 
affect the volatility of small-firm returns, but small-firm returns do not have 
much effect on large-firm volatility. Moreover, we also show that there 
are significant asymmetric effects in both the variances and covariances 
which have not been documented before. In particular, bad news about 
large firms can cause volatility in both small-firm returns and large-firm 
returns. Furthermore, the conditional covariance between large-firm returns 
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and small-firm returns tends to be higher following bad news about large 
firms than good news. In addition, news about small firms has minimal 
effect on the variances and covariance. 

Perhaps the most important conclusion of this research is that the choice 
of a multivariate volatility model can substantially affect the conclusions of 
the analysis. This is especially important for portfolio selection, risk man- 
agement, and asset pricing. For example, we showed that the correlations 
between the risk-minimizing hedge ratios derived from various popular mul- 
tivariate volatility models are surprisingly low, and sometimes negative. 

Appendix 

Proof of Proposition I .  
The VECH model: If p;j = 0 for all i # j ,  then the matrix R reduces to 

an N x N identity matrix. Hence 

or equivalently, 

hii t  = O;;,  for all i ,  and hi j t  = q5i jOi j t  for all i # j .  

With ai = a;1 ;  and b; = pi 1;  for all i ,  Q i j t  becomes 

Oij t  = ~ i - ~ i ~ )w;j + p ; p j ( i :Ht-1 l j )  + C X ; ~ ~ ( L ( E ~ - ~  for all i and j 

Substituting this expression for O i j t  back into the expressions for hi i t and 
h i j t ,we obtain the VECH model with the restriction that pij  = p i p j :  

hiit = w;;+ pi2h;;t-1 + for all i ,  and 
h . .  = q5..w..+ @ . . p . p . h . .

l J t  I J  [ J  r J  I j t j t + @ i j a i a j & i t - ~ E j t _ l  f o r a l l i f j .  

The CCORR model: If q5;j = 0 for all i # j ,  then the matrix CD becomes 
a null matrix. Hence 

Ht = DiRDt ,  

or equivalently, 

hiit= O;; ,  for all i ,  and hi j t  = pij J O i i t J Q j j t  for all i # j. 

With a; =ail; and b; = pi 1 ;  for all i ,  O i j t  becomes 

for all i and j .O i j t  = w;j + p ;p j ( l :Ht - l l j )  4- a ; a j ( l : ~ ~ - ~ & ~ - ~ l ~ )  

Substituting this expression for O i j t  back into the expressions for hi i t and 
recognizing that Q i i t  = hi i tand Q j j t  = h j j t ,we obtain the constant correla- 

mailto:@..p.p.h.
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tion model: 

h . .r r t  -- @..  + p2h..r r t - ~+ai2 2 for all i ,  and 

h i j t  = pi j Jh i i tJh j j t  for all i # j .  

The BEKK model: If p i j  = 0 and q5ij = 1 for all i # j, then the matrix 
R reduces to an N x N identity matrix and the matrix @ reduces to a matrix 
with zero diagonal elements and unit off-diagonal elements. Hence 

where i is a vector of ones. Expressing D, and G, in terms of 8 ,  we have 

In matrix notation, this is 

where A = [ a l ,  . . . ,aN],B = [ b l , .  . . ,bN],and S2 = [wi j ] .  
The FARCH model: As before, if p ; j  = 0, q5ij = 1 for all i # j, then 

If, in addition, A = a(whl )and B = p(whl )  then the expression for H, 
can be rewritten as 

or equivalently, 

h ,r ~ t. = a ; j  +hihjhl,, for all i 
2 

h p t  = @I, + B h p t - l  + a & l , t - l ,  

where 

hl,/ = wlHtw ,  sl,, = wls t ,  and a ; j  - w ; j  - hihjwlQw. 
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