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ccurate forecasts of volatility are

useful for several applications, such as

risk management, derivatives pricing,

options trading, and hedging. Yet
there is no single model that is widely accepted
by the industry as “the” way to forecast volatility.
In fact, until the mid-1980s, the standard model
was to use historical volatility as a forecast of
future volatility.

Since then, several alternative models have
been defended by their users, such as exponential
smoothing (used by RiskMetrics), GARCH-
based models (used by Salomon Brothers), and
time series models on squared returns (used by
many academics). The flavor of these models is
the same, because they all model the way volatility
tends to cluster through time.

This article compares and contrasts several
of these popular forecasting models. It first argues
that the intuition behind these models is the same;
the only important difference is how much confi-
dence the user has that historical data can give the
true parameters in the ‘volatﬂity process.

Then, using daily historical data on
exchange rates and their implied standard devia-
tions, we demonstrate that this class of models
can yield better volatility forecasts than market-
based implied standard deviations. Finally, we
present two potential volatility-based trading
strategies, and demonstrate that this class of fore-
casting models can be used to successfully “beat
the market.”
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WHY VOLATILITY IS FORECASTABLE

Volatility can be defined as the magnitude
of unexpected price changes. It can be high
either because prices unexpectedly increase or
because they unexpectedly decrease. The most
common definition of volatility is the standard
deviation of returns:

G = \Er — 1,)° 1)

where r is the return and L is the expected
return. In practice, O is unobservable, so it must
be estimated. The usual way to estimate volatility
is with the sample standard deviation
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where N is the sample size. If too large a data set
is used to construct this estimate, there is a risk of
clouding the estimate with stale data. On the
other hand, if not enough observations are used,
there is the risk of having a volatility estimate
dominated by one or two observations, giving an
imprecise estimate. To balance these two risks,
moving (or rolling) standard deviations are
frequently estimated, fixing N at an intermediate
level and dropping an old observation whenever a
new observation appears.

Exhibit 1 plots daily moving standard devi-
ations for deutschemark returns, using a sixty-
four-day (three-month) window since June 1979.
Two observations are apparent.

First, this measure of volatility varies
through time. It ranges from about 0.20 in late
1979 to about 1.20 in Summer 1985. Second, the
more volatile periods tend to cluster together, as
do the more tranquil periods.

For example, in 1981, volatility was typical-
ly about 1.00, while in 1983 it was about 0.60.
This volatility clustering is also apparent in Exhibit
2, which plots the deutschemark realized returns
surrounded by their 95% confidence intervals.
Exhibit 2 also shows periods of tranquility (e.g.,
1994), followed by periods of volatility (early
1995}, Both these properties are common to most
asset classes (including fixed incomes, equities,
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ExasiT 1

VOLATILITY 1S TIME-VARYING —
DEUTSCHEMARK MOVING
STANDARD DEVIATIONS
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commodities, and currencies), and are especially
apparent in data measured at the daily frequency
or higher.

Of course, the results in Exhibits 1 and 2
shouldn’t surprise anyone, because the market
perception of volatility is also changing through
time. Exhibit 3 plots the daily implied standard
deviations on thirty-day Swiss franc currency
options since August 1990, as recorded by AIG
International. This plot follows a similar pattern to
Exhibits 1 and 2, with predicted volatility peaking
during the breakdown of the ERM, and dropping
steadily since then until early 1995.

The important conclusion from this discus-

EXHIBIT 2

VOLATILITY IS TIME-VARYING —
DEUTSCHEMARK REALIZED RETURNS
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EXHIBIT 3

EXPECTED VOLATILITY IS TIME-VARYING —
Swiss FRANC IMPLIED STANDARD DEVIATIONS
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sion is that volatility is not random, but clusters
through time. Periods of volatility tend to follow
periods of volatility, while periods of tranquility
tend to follow periods of tranquility.

Several reasons have been proposed for
volatility clustering in financial markets, such as
serially correlated news arrival (Diebold [1988]),
institutional trading rules (Bollerslev and
Domowitz [1991]), market microstructure effects
(Attiyeh [1995]), learning on the part of
economic agents (Mizrach [1995]), and the
dissemination of information across markets
(Engle, Ito, and Lin [1990]). But whatever the
reason, volatility clustering implies that if volatili-
ty is currently low, it will probably stay low for
some time.

On the other hand, if it is currently high, it
will probably stay high. This suggests that when
creating volatility forecasting models, we should
seek models that imply low (high) variance when
past returns are unexpectedly small (large). Essen-
tially, these kinds of models get inside the brain of
a trader. Traders typically expect high volatility
when recent price moves have been unusually
large, and low volatility when recent price moves
have been unusually small.

A straightforward way to capture this
phenomenon is to use a time series model in
which the driving variable is the size of past
returns. For example,

G =f@ +85s +8s5,+..)+g (3

where S is the size of the unexpected return at
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time t — 1 and f (-) is an increasing function, is a
time series model that captures this phenomenon.
If the parameters 8, are all positive and declining
to zero, volatility will tend to be high when recent
shocks have been large, and low when recent
shocks have been small.

COMPARING AND CONTRASTING
THE MODELS

Consider the following four volatility
models: historical volatility, an ARMA model on
squared returns, GARCH, and exponential
smoothing. We discuss each of these models, and
demonstrate that each can be considered a special
case of Equation (3). To simplify the notation, we

define volatility as the variance of returns,
2

o° = E(rtz), in contrast to its usual definition as

the standard deviation of returns.! If desired, read-
ers can take square roots wherever required.

HISTORICAL VOLATILITY

Historical volatility is perhaps the oldest
and simplest volatility model. This model parame-
terizes current volatility as

~2 1 Mo
(o) == ) 4
N1 (4)

Observations in this model get either equal
or zero weight. Any observation inside the
window of size N gets a weight of 1/(N — 1),
while any observation outside that window gets a
weight of zero. The choice of N is arbitrary, but is
frequently chosen to be about 60, corresponding
to three months if daily data are used and five
years if monthly data are used.

The forecast of volatility from this model
is simply the current volatility. In other words,
volatility is forecasted to be the same as it was
over the last N periods. So if the sample vari-
ance over the last N observations is 13%, then
the forecasted volatility (for any forecast hori-
zon) is 13%.

If N is small enough, this model captures
volatility clustering, because predicted volatility
will be high if current volatility is high. In fact,
rewriting this model as
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£ ﬁrﬁ_N (5)
and recognizing that r? is a measure of the size of a
shock, reveals that the historical volatility model
can be written as a special case of Equation (3)
with Bj =1/(IN—-1)and f (x) = x.

The forecasts created from this model,
however, do not exploit the volatility clustering
property optimally. To illustrate, if N = twenty-
two days, the forecasted volatility will be last
month’s variance, even though volatility might
have been unusually high for the last five days. A
better forecast would recognize that last week’s
volatility was high, and use this to forecast higher
near-term volatility.?

Essentially, this model is backward-looking,
chasing a moving target. We therefore view it as
the strawman. Any new forecasting model must
perform at least as well as historical volatility for it
to be considered reasonable.

ARMA MODELS ON
SQUARED RETURNS

One class of models that better captures
the dynamic properties of volatility is the
ARMA (autoregressive moving average) model
on squared returns. There are many models in
this class, so for illustration purposes we focus on
the ARMA (p, 0) model, or the autoregressive
model of order p:

2 2 2
T =0+ By 4o+ ﬁprtfp + 1M, (6

This model is simply a linear regression model of
current squared returns on lagged squared returns,
and can be estimated with ordinary least squares
using any statistics package.

Taking expectations of Equation (6), condi-
tional on information up to time t — 1, gives this
model’s estimate of current volatility:

D=0+ Bl + o+ B, @)

It is immediately obvious that Equation
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(7) is a generalization of the historical volatility
model, reducing to the historical volatility
model if p = N, ® = 0, and ﬁj =1/(IN-1). A
key advantage of this model over the historical
volatility model is that it is data-driven. The
weights in this model depend on the data, and
the lag length N can be selected from statistical
criteria (for example, by maximizing the Akaike
criterion), making it depend on the data as well.
This model can also be written as a special case
of Equation (3), suggesting that it captures
volatility clustering.

Exhibit 4 gives a comparison of the
weights from the historical and ARMA models
applied to deutschemark volatility. The estima-
tion is done with ordinary least squares using
daily deutschemark returns from 1975 to 1990.
The lag length of fifteen is selected from statisti-
cal criteria.

The most striking feature in Exhibit 4 is
that the ARMA weights drop off to zero. This is
expected, because more distant returns should
have a lower impact on current volatility than
more recent returns. With a large enough data set,
we would expect these weights to decline monot-
onically to zero. The lack of smoothness is caused
by small sample problems.

To forecast volatility from the ARMA
model, define 6-;2+klt = E(rtik|‘Pt) as the fore-

casted volatility k periods hence, using only
current information (‘¥). Then the forecast can
be calculated recursively from the equation

ExsiBIT 4

COMPARISON OF COEFFICIENTS FROM ARMA
AND HISTORICAL MODELS
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In contrast to the forecasts from the historical
volatility model, this forecast depends on the time
series properties of volatility. Also, news from the
distant past gets a different weight % than news
from yesterday (B,). And, finally, this model gives
a term structure of volatility, in which the volatili-
ty forecast depends on the forecast horizon, k. To
see this, suppose M==-2 and compare the one-
step-ahead forecast (k = 1),

2 2
0;:2+Iit =0 -+ Birt + BQrt—i

to the two-step-ahead forecast (k = 2),

it _ = 3
Gt+2|t = ) 7k B16t+1lt o

st
+ S}ﬁ“:h

ol + B) +
([3'12 + By + B1ﬁzrt2—1

The weights on the squared returns are different
for different forecast horizons, meaning that the
forecasts will be different. It is straightforward to
show that the forecasts eventually converge to

02 -
i L [

GARCH

The GARCH (generalized autoregressive
conditional heteroscedasticity) model is a time
series model of volatility developed by Engle
[1982] and generalized by Bollerslev [1986].2 In
this model, the measure of current volatility is

_ 2 ~2
o, = ® + ar_; + Bo., 9)
The essential difference between the
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GARCH model and the ARMA model on
squared returns is that the ARMA model parame-
terizes the dynamics of squared returns, while the
GARCH model parameterizes the dynamics in
the expected value of squared returns (i.e., volatili-
ty). Because of this difference, the estimation
methods also differ. Least squares regression
models do not work for GARCH models because
the dependent variable is unobservable. Instead,
maximum likelihood methods are usually used.
See Bollerslev, Chou, and Kroner [1992] for a
description of how to estimate GARCH models.
Rewriting this equation gives an alternative

expression for the measure of current volatility
from a GAR.CH model:

- pi-l.2
+ oc_21[33 R (10)
j=

t 1_]3

This equation shows that the GARCH
model captures volatility clustering, because it is a
special case of Equation (3), with 8, = o™ and
f(x) = x. This equation also emphasizes the simi-
larity between the GARCH model and the
ARMA model.

Notice, for example, that the GARCH
measure of volatility is a special case of the
ARMA measure. Both define current volatility
as a linear function of lagged squared returns,
but the GARCH model restricts the weights to
decay geometrically, with B as the decay para-
meter. Exhibit 5 plots the GARCH model
weights on top of the ARMA model weights

EXHIBIT 5

GARCH MobpeL WEIGHTS
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for the deutschemark. The GARCH model
smooths out the weights of the ARMA model.
So if the user thinks that there is too much
noise in the data to estimate the ARMA weights
accurately, then the GARCH model is a reason-
able soludon.

The equation for forecasting volatility from
2 GARCH model is

=2 _ 1-p k=152 (1)

t+1|t

where p = o + B. This model also gives a term
structure of volatility because the forecast depends
on the forecast horizon, k. To illustrate, see
Exhibit 6, which presents the term structure of
forecasted volatility for the deutschemark as of
April 26, 1995. Analogous to the ARMA fore-
casts, this forecasted volatility converges to

) _ Q]
Ol T T "o B

as the forecast horizon increases.

Several extensions of the GARCH model
are possible. For example, it might not be realis-
tic to assume that the long-horizon forecasts are
always converging to the same constant. The
components GARCH model allows this long-

=

ExHIBIT 6

VOLATILITY FORECASTS DEPEND ON
ForecasT HORIZON —

TERM STRUCTURE OF GARCH VOLATILITY
— DEUTSCHEMARK APRIL 26, 1995
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%

run mean to change through time according to
the equation

e 2 2
0, =0+ po_,; + e(rt—l - Gt—I)

Think of this as a long-run component that
gradually adapts to market changes. Importantly,
this modification does not change the essential
characteristic of GARCH models, that they can
be written as special cases of Equation (3) and are
therefore models of volatility clustering.

EXPONENTIAL SMOOTHING

The exponential smoothing model defines
current volatility as

67 = a2y + (1 — &) 62,

which can be rewritten as

X - of

~2
c, = =

=1

Notice that this is a special case of the
GARCH model, in which ® = 0 and ot + 3 = 1.
As such, it shares most of the properties of the
GARCH model. Specifically, it can be written as a
special case of Equation (3), and, as such, addresses
the volatility clustering property. This is not neces-
sarily, however, a good forecasting model. Plugging
® = 0 and & + B = 1 into Equation (11) reveals
that the forecasts from this model are

~ 2 _ x2 2
Gt-t—klt = &

The forecasts for any horizon are always equal to
the current squared return. So this model
overemphasizes volatility clustering, assuming that
if volatility is high today, then it will be high
forever. Long-horizon forecasts from this model
do not revert to any mean, making them
(perhaps) less reasonable.

COMMENTS ON THE MODELS

The models presented here are the simplest
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models in each of their classes, and therefore are
easily improved. For example, as presented, all the
models share the weakness that positive and nega-
tive returns are assumed to have the same impact
on volatility. In currency markets, this might be
reasonable. But in equity markets, it is commonly
believed that negative returns have a greater
impact on volatility than positive returns, due,
e.g., to leverage-type effects. All these models can
easily be modified to address this property by
making the weights depend on whether the return
is positive or negative. For example, the GARCH
model can be generalized to

2.2

62 = o + o, + on’, + PG,

where n_, takes the value r,_; if r_, is negative,
and takes the value zero if r_; is positive. In this
model, the weight on 17y is (0t + o) if r_, is
negative, and o if r_; is positive. We would
expect that in equity markets, 0., > 0. This prop-
erty is commonly referred to as “sign asymmetry.”
See Engle and Ng [1993] or Nelson [1990].

Another weakness of these models is that
they ignore “size asymmetries.” It is widely
believed that large returns have a different impact
on future volatility than normal-sized returns.
Specifically, the impact of large returns is shorter-
lived than the impact of small returns.

Anecdotally, recall the October 1987 Crash
in the equity market. Market volatility returned to
its pre-Crash levels very quickly after the Crash
(within two weeks). To address this asymmetry,
these models can be modified to allow the weights
to depend on the size of the crash. There are
several ways to do this; Rabemananjara and
Zakoian [1993] and Glosten, Jagannathan, and
Runkle [1993] present two of them.

A third weakness is that outliers generally
have a noticeable effect on the estimated volatility
process, so volatility models should minimize the
weight of outliers. The statistical literature has
several suggestions about how this can be done.
The simplest is to give each observation a weight
that is inversely proportional to its size when esti-
mating the models.

Several other model improvements are
possible. For example, other information (like
volume) could be included as a regressor in the
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volatility models. This might be useful because
several studies reveal that other information is a
significant determinant of volatility (e.g.,
Lamoureux and Lastrapes [1990]). Perhaps more
important, one can combine market expectations
with time series models to improve forecasting
performance. Kroner, Kneafsey, and Claessens

[1995] show that ,

&

where ISD is the implied standard deviation from
options prices’,\?hﬁ—mgde??irecasts volatility
better than either just the implied volatility or just
the GARCH model.

We conclude this section with some

= o + oy, + BGZ, + MSDL; 4

cautions on creating volatility forecasting models.
First, markets differ, implying that the appropriate
volatility forecasting model is market-specific. For
example, fixed-income volatility is correlated with
yields, so interest rate volatility forecasting models
should address this property (Brenner, Harjes, and
Kroner [1996]).

Also, a long time span is needed to get an
accurate measure of the mean to which long-run
volatility forecasts revert, especially in the compo-
nents GARCH model. But if the time span is too
long, then potential structural breaks might appear
in the data set. For example, fixed-income markets
underwent a structural change between October
1979 and October 1982.

Finally, high-frequency data are required to
get an accurate measure of current volatility
(Nelson [1992]). But if the frequency is as high as
intradaily, then seasonality becomes important
(Anderson and Bollerslev [1995] and Ghose and
Kroner [1996]).

EVALUATIONS OF
FORECASTING ABILITY

The true test of a model’s veracity is its abil-
ity to forecast. We therefore evaluate these models
using several measures of forecasting ability,
grouped into statistical evaluations and investment-
based evaluations. In all cases, the models are esti-
mated on four currencies {deutschemark, Swiss
franc, Japanese yen, and British pound), using daily
data from January 1975 to August 1990, and the
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estimated models are used to construct daily out-of-

sample twenty-two-day volatility forecasts from
September 1990 to April 1995.*

STATISTICAL EVALUATIONS

Two statistical properties are required of a
good forecasting model. First, the model should
be unbiased, meaning that on average it should
give the correct forecast. Second, the typical fore-
cast error should be small.

There are two ways to evaluate the bias of a
forecasting model. One is to compare the average
forecast with the average realized volatility. A
more stringent test is to regress the true volatility
on the forecasted volatility, and test if the intercept
coefficient is zero and the slope coefficient is one.

EXxHisIT 7

Specifically, one can regress

L ~ L

G, = &+ b5 « g,
2 262

t 0 t t
(o, b)

and test if fet-6t7r = (0, 1). This test follows an F-
distribution with (2, N) degrees of freedom.

The results of these evaluations are present-
ed in Exhibit 7. The columns labeled “Average”
give the average forecasted twenty-two-day
volatility for the four models, along with the aver-
age market-based one-month implied volatility
and the average realized volatility, where realized
volatility is defined as the sample variance over the
subsequent twenty-two days.

Generally speaking, the time series models
understate realized volatility, while the market-

STATISTICAL EVALUATIONS

Deutschemark British pound
6. = a + b6? 6. = a + bG?
MAFE Average a b F MAFE Average a b F
Historical 0.303 0.574  0.432 0.269 0.000 | Historical 0.319 0.563  0.358 0.367  0.000
(0.018) (0.027) (0.019) (0.027)
ARMA 0235 0458 0.073 1.121  0.405 | ARMA  0.259 0470 0.033 1133  0.177
(0.042)  (0.090) (0.035) (0.071)
GARCH 0.231 0.484 0.171 0.860 0.107 | GARCH 0.254 0.509 0.143 0.829  0.002
(0.033)  (0.066) (0.027)  (0.048)
Implied  0.264 0.641 0.226  0.564 0.000 | Implied  0.263 0.608 0.085  0.794  0.000
(0.027)  (0.039) (0.025) (0.038)
Truth 0.587 Truth 0.565
Swiss Franc Japanese Yen
6. = a + b6? 6. = a + bG?
MAFE Average a b F MAFE Average a b F
Historical 0.351 0.711  0.504 0.266  0.000 | Historical 0.281 0.474  0.370 0.266  0.000
(0.020)  (0.024) (0.016)  (0.028)
ARMA 0252 0615 0.161 0.866 0.163 | ARMA 0225 0417 0.163 0.797  0.140
(0.044) (0.070) (0.044)  (0.102)
GARCH 0.250 0.631 0.208 0.768 0.000 | GARCH 0.223 0.423 0.189 0.726  0.006
(0.038) (0.058) (0.037) (0.085)
Implied  0.258 0.695 0.289 0.580 0.000 | Implied  0.199 0.471  0.130 0.777  0.000
(0.028)  (0.038) (0.021)  (0.041)
Truth 0.693 Truth 0.496
WINTER 1996
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based forecasts overstate it. This result is probably
sample-specific, and need not hold for different
time periods or for different asset classes. The
columns labeled “F” give the p-value for the F-
test of fe—et= (0, 1). For all four currencies,
the historical and implied forecasts fail this test,
while the ARMA model passes. The GARCH
results are mixed.

The most common measure of the size of
the typical forecast error is the MAFE (mean
absolute forecasting error), defined as

t

- B0 2
MAFE = Y |6 — ©
i=1

The lower the MAFE, the more precise the
volatility forecasts. These are presented in the
columns labeled “MAFE” in Exhibit 7. For all
currencies, the historical volatility gives the high-
est MAFE, and for all currencies except the yen,

ExwisriT 8

the time series models give the lowest MAFE.
Another statistical way to evaluate the fore-
casting ability of the models is to examine the
distribution of forecast errors. Exhibit 8 presents the
distributions of the GARCH and ISD forecast
errors for each currency. These distributions are
skewed to the left, suggesting that the models are
more likely to understate future volatility by large
amounts than to overstate future volatility by large
amounts. Also, all the models tend to make small
positive forecast errors. Finally, for all currencies
except the yen, the ISD has a higher probability of
making large positive forecast errors than GARCH.

INVESTMENT-BASED EVALUATIONS

Statistical evaluations generally ignore
potential investment opportunities. It is possible
for a forecast to be consistently biased and have a
large MAFE, even though it contains information
that is useful to market participants.

DisTRIBUTIONS OF FORECAST ERRORS
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For example, the GARCH-based forecasts
might consistently underpredict future volatility,
but if the difference between the GARCH fore-
cast and the market forecast (ISD) is much smaller
than normal, this might suggest a trading opportu-
nity. Therefore, as an alternative forecast evalua-
tion method, we propose two investment-based
evaluations that have positive expected value if the
model’s forecasting ability is better than the
market-based implied volatility.

Specifically, we propose evaluation methods
that involve buying and selling straddles and meth-
ods that involve buying and selling volatility swaps.
We use the GARCH model as the representative
time series model, because the evaluations using
ARMA models are almost identical.

Consider the following investment-based
evaluation. Each day, an investor buys $1 worth of
a thirty-day “historical versus implied volatility
swap”® if the swap is cheap, and sells $1 worth of
the swap if it is expensive. The swap is cheap if the
forecasted twenty-two-day volatility exceeds the

ExHIBIT 9

implied volatility, and expensive if the forecasted
volatility 1s less than the implied volatility.

The investor holds this swap until expira-
tion (one month), then puts the proceeds under
the pillow. The cumulative “profits” under the
pillow are a good evaluation of forecasting power,
because any forecast that consistently has informa-
tion about the future that is not already contained
in the ISD should realize positive cumulative
wealth.® Notice that this is not a trading strategy.
Transaction costs are ignored, and the investor is
engaging in daily activity no matter how strong or
weak the signal is.

Exhibit 9 gives the cumulative wealth real-
ized by this strategy from August 1990 to April
1995 using both the GARCH forecasts and the
historical forecasts. Notice first that for all curren-
cies, the GARCH model finishes with positive
wealth, suggesting that the time series forecasts
might contain information about future volatility
that is not contained in 1SDs.

Second, notice that, except for the

BuY (SELL) SwaP IF IT’s CHEAP (EXPENSIVE)
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deutschemark, the historical-based volatility fore-
casts finish with negative wealth, suggesting that
they do not contain information about mispricing
of ISDs. In all cases, the GARCH-based evalua-
tions outperform the historical-based evaluations.

Similar conclusions arise if the investment
instrument is a one-month at-the-money straddle
instead of a volatility swap. Exhibit 10 gives the
cumulative wealth using straddles. Again, the time
series forecasts outperform the historical forecasts
for all four currencies. Also for all four currencies,
the GARCH forecasts finish with positive wealth,
although the evidence is weak for the British
pound. Finally, for two of the four currencies (yen
and pound), the historical forecasts finish with
zero or negative wealth.

POTENTIAL APPLICATIONS

Both the statistical and investment-based
evaluations suggest that time series models of
volatility might provide better volatility forecasts

Exnisit 10

than either historical forecasts or market-based
implied volatility. Therefore, these forecasts should
be useful for a wide range of potential applications.

For example, they could be used to price
options (see Noh, Engle, and Kane [1994] or
Mustafa [1988]). They are relevant for portfolio
hedging because they can be used to determine
whether to use real or synthetic options. By
extending these models in the multivariate direc-
tion, they can be used to take correlation bets by
trading basket options or spread options (see Engle
and Kroner [1995]). They could be used to take
term structure bets by trading forward volatility
agreements or calendar spreads, because these
models give a term structure of volatility. Asset
volatility is correlated with asset returns, so they
could be used as a potential return forecasting
signal. And, as suggested earlier, they could be
used to take volatility bets by trading historical
versus implied volatility swaps, straddles, butterfly
spreads, and so on.

Consider the following specific application,

Buy (SELL) STRADDLE IF IT’S CHEAP (EXPENSIVE)
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which takes volatility bets by trading straddles.
Suppose an investor buys one-month at-the-
money straddles when they are very inexpensive,
with the number of straddles purchased propor-
tional to the forecasted profit opportunity. Specifi-
cally, she purchases an amount equal to the
difference between the GARCH forecast and the
implied, but only if this difference is at least 1%.
The investor uses this threshold to avoid taking
costly bets on a weak signal.

If GARCH volatility is forecasted to be
16%, and the implied is 13%, she buys $3 worth of
the straddle; if GARCH volatility is 13.5% and the
implied is 13%, then she stays out of the market.
Assume she never shorts the straddle because of the
high probability of significant losses, and that she
finances all purchases by borrowing at the risk-free
rate. She holds the straddle until expiration, and
puts her proceeds under the pillow. Assuming trans-

+he l'-‘-] action costs of 1/2%,AEXhibit 11 gives the cumula-

A et W

tive profits under her pillow since August 1990.

ExaisiT 11

The most obvious conclusion from Exhibit
11 is that the strategy is very effective. For all four
currencies, she finishes with a significant amount
of money under her pillow, even though her
initial investment was zero. A second conclusion is
that she is only in the market infrequently. Of the
1,204 days in the sample, she ranges from being in
the market only 27 days for the deutschemark to
250 days for the yen. But when she is in the
market, it usually pays off, as she tends to make
gains and lock them in.

To better understand these results,AExhibit
11 alse?Elots the cumulative profits from the strat-
egy of always buying $1 worth of the straddle, no
matter what the forecast says. Consider, for exam-
ple, the Swiss franc. Notice that until about May
1992, owning straddles had minimal profit poten-
tial. Her strategy had her out of the market most
of this time. The first real profit potential occurs
in May and June 1992, and she is in the market
buying straddles during these months.
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ToTtAL MONEY UNDER THE PiLLOW
USING STRADDLE STRATEGY
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For the next two years, buying straddles is
generally a losing proposition, and she is out of
the market for most of this period. The next real
profit opportunity is in June 1994, and she is then

ExHiBIT 13

back in the market. She then locks in her gains,
and reenters the market in time to catch the profit
opportunity in early 1995.

A similar analysis is possible for the other
three currencies. In fact, perhaps her only major
missed opportunity is the British pound during
the currency crisis. Her strategy had her only test-
ing the market, when she would have been better
off investing heavily in straddles. Exhibit 12 plots
the aggregate profits from all four currencies.’

A shightly different picture emerges if the
investment instrument is a historical versus
implied volatility swap instead of a straddle. Again,
we assume the investor is in the market buying a
notional value of the volatility swap proportional
to the GARCH-implied spread, but only if the
spread is at least 1%. The transaction costs are
again assumed to be 1/2%,

Exhibit 13 plots the cumulative profits from
this strategy. Our investor earns essentially zero
profits from her deutschemark and pound invest-
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ments, and earns only small profits from her yen
and franc investments. It is obvious from the
“always buy” lines, however, that purchasing the
deutschemark and pound swaps is generally a bad
idea for the entire sample period. Smartly, our
investor was rarely in the market, and therefore
earned almost zero profits. For the yen and the
franc, there were only a few profit opportunities,
and our investor was in the market for many of
them. Exhibit 14 plots the aggregate profits from
all four currencies.

CONCLUSIONS

Several conclusions can be drawn from this
study. First, short-term volatility is forecastable.
Second, any model that captures volatility cluster-
ing has the potential to give reasonable volatility
forecasts, because these models recognize that if
current volatility is high, then volatility will prob-
ably remain high for the near future.

One class of models that does this is the
time series models where the driving variable is
the size of returns. Special cases of this include
GARCH models, exponential smoothing, and
ARMA models on squared returns.

Third, there are many potential applications
of good volatility forecasts. Several are mentioned
here, two of which are examined in detail. Specif-
ically, we evaluate trading strategies that have the

ExHisiT 14
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investor buying straddles or volatility swaps if the
time series forecasting model indicates that they
are inexpensive. Profit opportunities are available,
even after accounting for transaction costs.

ENDNOTES

The author thanks Tim Bollerslev, Jeff Hord,, L.
Sankarasubramanian, Vikas Srivastava, and members of the
Advanced Strategies Group at -B-Z-W”Eﬁys Global
Investors for helpful comments.

1Also, to keep the notation simple, we assume that
the expected, or average, return is zero. This assumption is
reasonable for sufficiently high-frequency data (e.g., daily),

2This should not be viewed as a criticism of the
model, but rather as a criticism of how the model is generally
applied in forecasting exercises. This same model could be
used to construct forecasts that do not suffer from this prob-
lem. When we discuss ARMA models in the next section,
we will see how this can be done.

For a survey of its applications in finance, see
Bollerslev, Chou, and Kroner [1992].

4The forecasted twenty-two-day volatility is the sum
of the forecasts from horizon k = 1 to horizon k = 22,

A “historical versus implied volatility swap™ has the
buyer agreeing to pay the seller the implied standard devia-
tion, and receiving the realized sample standard deviation. So
if the (annualized) implied standard deviation on February 1
is 13%, and realized volatility in February was 15%, then on
February 28 the buyer would receive from the seller $2 times
the notional amount.

®An important weakness of this evaluation is that bad
forecasts can still finish with positive profits. Any transaction
for which the implied exceeds or falls short of bath the real-
ized and the GARCH volatility will make positive profits. To
illustrate with an extreme situation, if the ISD always over-
states realized volatility by a small amount, but the GARCH
model always understates it dramatically, this strategy will
always sell the swap, making money on every transaction,
even though the ISD is a much better forecast than GARCH.
Therefore, these evaluations should be interpreted as neces-
sary but not sufficient criteria for the forecasts to meet.

7Further analysis suggests that these encouraging
results cannot be attributed to market drift. Specifically, after
transaction costs, delta-neutral straddles are even more prof-
itable than the straddles reported here.
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