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ABSTRACT

This paper uses recent advances in time-series modelling to derive long-
horizon forecasts of commodity price volatility which incorporate
investors’ expectations of volatility. Qur results are promising. We
compare several different forecasts of commodity price volatility, which
we divide into three categories: (1) forecasts using only expectations
derived from options prices; (2) forecasts using only time-series
modelling; and (3) forecasts which combine market expectations and time-
series methods, The forecasts in (1) and (2) are used extensively in the
literature, while those in (3) are new in this paper. On comparing these
different forecasts, we find that our proposed forecasts from category (3)
outperform both market expectations forecasts and time-series forecasts.
This result holds both in and out of sample for virtually all commedities
considered.

INTRODUCTION

Commodity prices have historically been one of the most volatile of international asset prices.
Over the period 197290, for example, the volatility of non-oil commodity prices in nominal
terms, as measured by the annualized standard deviation of percentage changes during the
previous 24 months, has not been below 15%, and peaked at more than 50% in 1975. It is not
surprising, then, that efforts to forecast commodity prices have been largely unsuccessful. In
fact, it can be expected that ex-post forecast errors will continue to display a large distribution
around zero, whether the forecasts are made using futures prices or specialists’ assessments. For
this reason, it is useful to construct a measure of confidence in the price forecast. The traditional
way to express confidence in a forecast is to bound it by a confidence interval, that is, to give an
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interval forecast and an associated probability. This is easily done in a world where volatility is
constant, but if volatility is itself changing, then a forecast of volatility must be derived before
an interval forecast can be constructed.

There are several reasons that such volatility forecasts of commodity prices are important.
For example, the economies of many developing countries are tied tightly to the success of
their principal commodity export. An assessment of the confidence in a commeodity price
forecast would therefore have policy implications for the governments of the developing
countries. Second, commodity price volatility has implications for developed countries
considering investing in and/or providing monetary aid to the developing countries, because
the ability of a developing country to repay the loan might be determined primarily by the
wealth generated from commodity exports. The explosive growth in international investing,
especially in developing countries, provides a third reason for the importance of volatility
forecasts. This growth, which is evidenced by the increasing numbers of country funds and
emerging market divisions in large brokerage houses, necessitates the use of long-horizon
volatility forecasts as a means of evaluating forecasted economic development. Finally,
volatility forecasts are crucial in the pricing of options contracts because, all else equal, a higher
forecasted volatility should result in higher options prices. So if any investor has a better
forecast of volatility than the market, he or she should be able to exploit the forecast to make
excess returns.

The purpose of this paper is to develop methods of forecasting commodity price volatility
over long time horizons, here taken as 225 calendar days. Several methods of forecasting
volatility over short horizons already exist in the literature, but many of these methods are not
appropriate for long-horizon forecasts. For example, implied standard deviation forecasts
derived from options prices as in Latane and Rendelman (1976), Beckers (1983), Wei and
Frankel (1991), and many others, may be appropriate for short-term forecasts, but are less
reliable for long-term forecasts because trading is very thin in options that are far from their
expiration dates. Also, traditional time-series methods, like ARMA models on moving standard
deviations as in Cao and Tsay (1992), or ARMA models on bid—ask spreads or daily price
ranges, as in Taylor (1987), are not likely to give useful forecasts because a 225-day forecast
will generally be simply the unconditional mean of the series if volatility is mean reverting. To
illustrate, the 225-day forecast from the ARMA(1, 1) model

y=w+0y_;+¢e_;+e

is
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" i 225 224

yr,t+225:w(29 )+9 Y +67 e,
i=0

which is approximately w/(1 — @) if lol <1, ie.if volatility is mean reverting. A similar result
holds for the GARCH family of models. It is important to recognize that while volatility is
probably mean reverting (Stein, 1989; Poterba and Summers, 1986), the literature indicates that
the reversion occurs at a hyperbolic rate (Baillie et al., 1993; Bollerslev and Mikkelson, 1993),
which is slower than ARMA and GARCH models permit. This paper provides volatility
forecasts for about 73 months, a period too long to apply conventional short-horizon forecasting
methods, but too short to expect that the unconditional variance will best capture the dynamics
of future volatility.

We will develop a forecasting model which combines investors’ forecasts with time series
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forecasts and produces forecasts of long-term volatility which are more accurate than the short-
term forecasting methods. This result holds both in sample and out of sample for almost all the
commodities we consider, suggesting that our proposed forecasting model can be an effective
tool for constructing interval forecasts, and perhaps for pricing long-term options. The paper is
organized as follows. The next section discusses some existing short-term volatility forecasting
methods and the third section presents our new proposed forecasts. The fourth section discusses
the data, the fifth section gives the results, and the final section presents conclusions.

EXISTING FORECASTS

Implied standard deviations

One popular method of forecasting volatility uses option prices to measure investors’
expectations of future volatility. An option is a contract which permits, but does not require, the
holder to buy (sell) the underlying asset at a predetermined price. Clearly, the more volatile the
price of the underlying asset, the more likely it is that the option will have value, consequently
the higher the option’s price. If the option market is efficient, then investors’ expectations of
future volatility as embodied in option prices should be the best volatility forecast available.
More specifically, option prices are functions of four observable variables (the price of the
underlying asset, the exercise price of the option, the time to maturity of the option, and the
risk-free rate of interest) and one unobservable variable (the expected volatility of returns on
the u.derlying asset over the life of the optior.). Since the option price is itself observable, and
since the option price is a monotonically increasing function of expected volatility, one can use
an option pricing model to back out the market’s expectation of volatility over the remaining life
of the option (Latane and Rendleman, 1976). This forecast of volatility is often called the
implied standard deviation, or ISD. We refer to it as a ‘market-based’ forecast because it is
based entirely on the expectations of participants in the options market (given a particular option
pricing model).

To compute the ISD we require an option-pricing formula for commodity futures options.
Most options on commodities are American options, meaning that they can be exercised either at
any date on or before maturity or at any time within a specific period (e.g. one month) before
maturity.' This early exercise feature of commodity options means that they should sell at a
premium relative to European options, which allow the option holder to exercise the option only
on the maturity date of the option. This in turn means that the use of standard European option
pricing formula of Black (1976) will result in ISDs which are overstated. The positive bias in
the ISD occurs because the European formula assumes that the higher option price is due to
higher volatility (and therefore a higher estimated ISD is obtained), when in reality the higher
price might simply reflect the early exercise premium. Unfortunately, no closed-form solution
exists for American options, though several approximation methods exist. We adopt the method
of Barone-Adesi and Whaley (1987), who provide an efficient approximation for pricing
American options on commodity futures. Their approximation relates the call price, C, to the
futures price, F,, the time to expiration, 7, the interest rate, r, the exercise price, X, and the

! Early exercise is important when dealing with options on futures contracts. Ignoring storage costs and convenience
yields, the futures price declines to the spot price as expiration nears. This makes the behaviour of futures prices
similar to that of a stock price that pays out continuous dividends. These ‘implicit dividends’ can only be reaped if the
option holder exercises his or her option.
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volatility, o. See the Appendix for the details of their approximation.” We will refer to the
Barone-Adesi and Whaley (1987) priceas C=C(F,, T, r, X, o).

Three important observations about the Barone-Adesi and Whaley (1987) pricing formula
(see equation (A4) in the Appendix) merit mention. First, while it is mathematically
complicated, it is easily programmed. Second, Barone-Adesi and Whaley (1987) show that their
approximation becomes exact as the time to expiration gets large. In this paper we are focusing
on long-horizon forecasts, so the approximation error should be quite small. Third, there are
only six variables in this formula—C, X, F, r, T, and o. The first five are observable and
therefore can be used to solve for o. This o, the ISD, is the measure of volatility implied by the
option price, that is, the market’s expectation of volatility over the remaining life of the
contract.

In this paper we will evaluate a set of forecasts based on ISDs. But for any given day in our
data set and for any given option maturity, there are several different options traded, one for
each exercise price. For example, on 2 November 1988 there are twenty wheat contracts which
expire in March 1989, each with a different strike price. Using these contracts separately, we can
extract twenty different ISDs, or twenty different forecasts of volatility for the period November
1988 to March 1989.° We used three different methods to collapse these multiple ISD forecasts
into a single volatility forecast. The first takes the ISD from the contact for which the price of
the option is most sensitive to changes in the volatility of the underlying commodity. Usually,
this is the at-the-money option, but occasionally it is the near-the-money option.* This contract is
used to extract the ISD for three reasons. First, because this contract price is the most sensitive
to volatility, it should return the most accurate measure of volatility. Second, the value added by
the American feature is the smallest for at-the-money options (Ramaswamy and Sundaresan,
1985). While we correct for the American feature, the correction is not perfect and we prefer to
use the ISDs that are least influenced. Third, at-the-money options have the smallest bias when
volatility is not constant. The Black model is (approximately) linear in volatility for at-the-
money options, which implies that the at-the-money implied volatility estimates will result in
only a small bias when volatility is stochastic (Hull and White, 1987).

Therefore one set of forecasts is the ISD extracted from the contract with the highest
derivative of the call price with respect to volatility, in other words, the ¢ which solves the
equation

C(F,T.r.X,s)-C(t T, X)=0 (1)

where C'(t, T, X;) is the observed call price at time ¢ for a contract with time to expiration T
and exercise price X;, C(-) is the Barone-Adesi and Whaley (1987) formula given in equation
(A4) in the Appendix, and i is chosen to maximize JC/do. Throughout this paper, we refer to

*To demonstrate the potential magnitude of the bias from not accounting for the American feature of a commodity
option, consider the May/1985 soybean future option selling on 2 November 1984 with an exercise price of $600. The
futures price was $664.75, the spot price was $627.50, the call price was $76.00, and the annualized interest rate was
9.737%. Using Black’s (1976) formula for pricing European futures options, the ISD is 0.2272, while using the
Barone-Adesi and Whaley American option pricing approximation, the ISD is 0.2174. The overstatement using the
European formula is thus about 5%.

* All twenty of these forecasts do not return the same ISD. This is an indication of one or more of the following: the
impact of price discreteness in an option pricing model that assumes continuous prices; misspecification in the option
pricing model; and/or option market inefficiencies.

*“At-the-money’ refers to the option whose exercise price is closest to the spot price of the underlying asset. The
difference in the ISDs from the at-the-money option and the near-the-money option is likely to be very small. To
illustrate, in previous work by the authors using soybean data, the correlation between at-the-money ISDs and just-in-
the-money ISDs from contracts with greater than 260 days to maturity is 0.9891.
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this T-period forecast of volatility at time ¢ as ISDAT, 7, for the ISD from the AT the money
option.

Using ISDAT, however, ignores information about volatility that is available in other
contracts. We therefore propose two other market-based forecasts of volatility which do not
ignore the potentially useful information in the prices of options which are not at-the-money.
First, we use a weighted average of all the ISDs that can be computed on a given date ¢ for a
given time to expiration T, with the weights being the derivatives of the option price with
respect to volatility. More specifically, the forecast we use is

L Y1, Or,

ISDAVG, ;=2 @)
Yrx.

where oy, is the ISD from a call option with T days to expiration and with exercise price X,
and ypy, is the derivative of the price of this call option with respect to volatility. This weighting
mechanism was chosen because it places the most weight on the ISDs from options most
sensitive to volatility changes. The idea is that more precise volatility estimates are returned by
more sensitive options, and consequently the more sensitive options merit a higher weight. We
call this forecast ISDAVG, because it is a weighted average of ISDs.

The second method we use to account for all the information in the options market chooses
the single measure of volatility which most closely approximates the observed pattern of ISDs
across different strike prices. Simply put, this method searches for the volatility estimate that
minimizes the sum of the weighted squared deviations of the theoretical call prices from the
actual call prices across exercise prices for a given time to maturity. As in the previous method,
the weights are the derivatives of the call prices with respect to volatility. More specifically

ISD1, r=arg min )y [C*(t, T, X) - CF,T,r,X;, o)) €)
o
X;

where all variables are as defined above. This method recognizes that the true volatility is the
same for all the options on a given futures contract, regardless of the exercise price, and
chooses the single estimate of volatility which is closest to satisfying the option-pricing equation
for all exercise prices. ‘Closeness’ is measured by the mean squared deviation between the
observed and theoretical prices, aggregated over all contracts with a given maturity and
weighted by y.y. We call this forecast ISD1 because it uses all the information to extract one
estimate of the ISD.

To summarize, three different forecasts of volatility are extracted from market expectations
using the ISDs from the option pricing approximation of Barone-Adesi and Whaley (1987). For
each day of our data set, we calculate these three forecasts for each contract expiration. For
example, using wheat futures options, on 2 November 1988 there were four different expirations
being traded (Dec/88, Mar/89, May/89 and Jul/89), meaning that we have three different
forecasts of volatility for each of four different horizons. The ISDs from equations (1)—(3)
which use the contract closest to 225 days from expiration are used as our market-based forecasts.

Several problems are inherent in these market-based forecasts, however. Perhaps most
importantly, the trading of options with maturities exceeding six months is often so thin that
long horizon forecasts of volatility using ISDs are potentially unreliable. Also, most option-
pricing models assume that volatility is constant, so when forecasts are extracted from these
models in a world of dynamic volatility, it is not clear what is really being forecast. Finally, it is
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possible that the option-pricing formulas are incorrect and/or the options market is not efficient,
as evidenced by the different ISDs that are extracted from different exercise prices (see footnote
3). These problems suggest that the forecasts extracted from option-pricing models might not be
the best available forecasts.

Time-series forecasting
Another method that has been proposed to forecast volatility involves time-series modelling of
the variances (see, for example, Engle and Bollerslev, 1986). Many assets are characterized
by time-varying variance, and consequently require dynamic models of volatility. One set
of models which has become popular in finance is the Autoregressive Conditional
Heteroskedasticity (ARCH) and Generalized ARCH (GARCH) models of Engle (1982) and
Bollerslev (1986), in which variances are modelled as an ARMA process. The popularity of
GARCH models stems from their ability to capture volatility clustering, a feature common to
financial time series. See Bollerslev ef al. (1992) for a survey of GARCH applications in
financial modelling.

If §, is the commodity price at time ¢ and $ is the information set at time ¢— 1, then a simple
GARCH(1, 1) model is’

InS,-InS, | =u+eg,
&9~ NQ,h,) C))
h,=w+ae’ + Bh,_,
Here, h, is conditional variance of returns. Given an initial value for /, and parameter estimates

for w, a and B, equation (4) can be used to forecast volatility at any given horizon. The
forecasting equation is simply (Engle and Bollerslev, 1986, equation 22)

w+aef+ﬁhr ifs=1

Eh, |9,) =
Crasl 9 ‘w+(a+ﬁ)E(h,+s_1|5,) ifs=2

or, using recursive substitution,

w+ae?+ﬁh¢ if s =

E(h,,19,) = 5=2 2 ;

o[l +(@+pf)++(a+p) 1+ (w+ag +Bh) ifs=2
Using equation (5) to forecast conditional variance at horizons 1, 2, ..., T permits us to obtain a
forecast of the variance over the T-period horizon by simply summing the T individual
forecasts. So this volatility forecast, which we call GARCH, is the square root of the aggregated

forecasted variances,
T
GARCH, 7=, |> B(h;| %) (6)
i=1

Akigray (1989), Lamoureux and Lastrapes (1993), and Day and Lewis (1992) demonstrate the
usefulness of the GARCH model in developing short-run volatility forecasts in various equity
markets.

*The simple mean equation in the GARCH model reflects the fact that the volatility measure of interest is a
measurement of returns volatility. Therefore the dynamics in the mean equation are not modelled.
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A second time series-based forecast of volatility, which is based only on historical returns, is
included in our comparisons as a simple benchmark that at a minimum more complex models
must beat. This forecast, which we call HIST, ; (for historical), is the sample standard deviation
of returns over the previous seven weeks. Bartunek and Mustafa (1994) find that for the stocks
they used, HIST outperformed both ISD-based forecasts and GARCH-based forecasts for long
horizons (80 and 120 days). However, this result seems to contradict much of the extant
literature.

To summarize, in addition to the three ISD-based forecasts, we also have two time-series-
based forecasts of volatility. The first pure time-series method uses a GARCH model to forecast
volatility over the remaining life of the contract and the second time-series method, HIST, uses
the sample variance of returns over the previous seven weeks as a forecast of future volatility.
But pure time-series models, by definition, ignore the market’s expectations of the future
volatility and rely solely on the information contained in the past data. Consequently, we
propose a third class of volatility forecasts which incorporates both time-series analysis and
market expectations of volatility.

COMBINED MODELS

Until recently, it was widely believed that the best forecasts of volatility came from the ISD
models, because they could be expected to dominate any time-series model that could be
constructed. With the introduction and growing numbers of applications of GARCH models,
however, researchers are beginning to conclude that GARCH forecasts outperform ISD
forecasts. See, for example, Bartunek and Mustafa (1994), Lamoureux and Lastrapes (1993),
and Day and Lewis (1992). But the evidence in these papers and elsewhere also seems to
indicate that while GARCH provides the best forecasts, ISDs still can be used to explain some
of the forecasting error from the GARCH forecast. Intuitively this seems plausible since the
GARCH forecast is conditional only on past information, while the ISD is a measure of market
expectations regarding the future volatility and is conceivably constructed from a larger, more
current information set. For this reason, we introduce the following forecasting model, which
combines the GARCH-based model with the ISD-based model:

InS,-InS,_,=u+e,
g|%,.,-NQO,h,) )
h,= w+ag’ + Bh,_+ 0%,

In this model, o,_, is the at-the-money ISD from the option having closest to 100 days to
expiration, extracted from equation (1). If the 100-day ISD implies that early exercise is
optimal, then we used the 100-day ISD from the previous day.® Models like this have been
estimated before (see, for example, Day and Lewis, 1992), but only in the context of tests for
market efficiency. They have not been used in forecasting exercises. The idea behind the market
efficiency test is that if the options market is efficiunt then the ISD backed out from a properly
specified options-pricing model should capture all the volatility of the spot prices that can be
predicted based on the current information set. The implication is that all the coefficients in the
variance equation of model (7) should be zero except for the coefficient on the ISD term. If

¢ We found that the horizon of the ISDs did not matter in equation (7). We therefore used 100-day ISDs instead of 225-
day ISDs because they are much more heavily traded and are much mere commonly analysed in the literature.




84 Journal of Forecasting Vol. 14, Iss. No. 2

either o or B remains significant upon inclusion of the ISD term, then there is information in the
past time series of volatility which is not incorporated into the market’s expectations of future
volatility, but is relevant in predicting future volatility. This implies that the options are
mispriced (either because the options market is inefficient or because the incorrect options
pricing formula is used), and data on past volatility data can be used to take advantage of the
mispricing.

Forecasts from this model are made with the following equation:

w+asf+ﬁht+6o,2 ifs=1

E(h, 19) =
Y o+ o0+ @+ PEG,,_|19)  ifs=2

®

Again, we forecast h,,, for each period between now and our forecast horizon, and the square
root of the sum of these forecasts is our forecast of volatility:

T
COMB, ;= Z E(h.; 1)
Vi

where E(h,_ ,-[.55,) is computed from equation (8). We call this forecast COMB, ; because it
combines the ISD and GARCH forecasts. This gives us six forecasts of volatility: three ISD
forecasts, two time series forecasts, and a combination ISD and GARCH forecast.

DATA

The forecasting methods presented above are evaluated using daily data for cocoa, corn, cotton,
gold, silver, sugar, and wheat. The time span covered for each commodity varies slightly,
depending on data availability, but usually extends from about January 1987 to November 1990.
The ISD-based forecasts require data on futures prices, interest rates, and options prices. The
futures data is daily closing prices, obtained from Knight-Ridder Financial Services. The
interest rates we use are the Treasury-bill rates from the bill which expires closest to the time the
option expires, as provided by Data Resources, Inc. The options price data for corn and wheat is
daily closing prices, obtained from the Chicago Board of Trade, while the rest of the options
data is daily closing prices, obtained from Data Resources, Inc. Information regarding the
features of various options and futures contracts (such as the last trading day, contract months,
etc.) is taken from the descriptions published by the different commodity exchanges. Table I
provides a brief overview of the options data by commodity and serves to illustrate the
magnitude of the data sets and the breadth of contracts traded per day. Most of Table I is self-
explanatory, except perhaps the final two columns. These give the number of unique options
(i.e. the number of different exercise prices) which were available with expirations close to 100
days and 225 days, respectively, on 5 January 1990.

The GARCH, ; and HIST, ; forecasts require spot price data, which was obtained from Data
Resources, Inc. In order to evaluate the forecasts, a measure of the ‘true’ 225-day volatility is
needed. One measure used in the literature and the one which we use here, is the realized
standard deviation of returns over the forecast horizon. This is computed by calculating the
square root of the average daily squared spot return over the forecast horizon. This is called
ACTUAL to represent the actual volatility of returns over the period of interest. Clearly,
comparing the various long-run forecasts to ACTUAL requires spot data which extends 225
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Table I. Options data summary

No. of strikes trading
Average no. of  on 5 January 1991

No. of contracts
Asset Dates contracts ~ No. of days per day 100-day 225-day
Cocoa 07/13/87-11/21/90 16,033 851 18.8 8 7
Cotton 01/05/87-11/02/90 27,735 964 28.8 15 10
Comn 07/01/88-11/28/90 38,349 606 63.3 14 11
Gold 01/02/87-12/06/90 25,625 987 26.0 9 6
Silver 01/02/87-11/28/90 26,122 979 26.7 8 9
Sugar 01/05/87-12/04/90 22,026 982 22.4 9 8
Wheat 01/02/87-12/10/90 35,859 994 36.1 12 3

days beyond the date of the last options observation, so the time span covered by our spot data is
from about January 1987 to July 1991.

ESTIMATION AND RESULTS

The three ISD-based 225-day volatility forecasts are computed from equations (1), (2), and (3)
above. In order to construct the GARCH forecast and the COMB forecast, we need to estimate
the GARCH model (equation (4)) and the COMB model (equation (7)). The relevant maximum
likelihood estimates are presented in Table II with asymptotic #-statistics in parentheses.” The Q°
statistic, which tests for remaining serial correlation in the standardized squared residuals and is
distributed 3, under the null of no remaining serial correlation, indicates that the estimated
models adequately capture the dynamics in the second moments. One result of interest is that for
many of the commodities, the GARCH variance equation coefficients sum to approximately one
(i.e. a+ B =~1), giving what is called the ‘IGARCH’ (for Integrated GARCH) model in the
literature. For these commodities, shocks to the variance are persistent, i.e. shocks remain
important determinants of the variance forecasts long after the shocks occur. To see this, set
a + B =11in the second line of the GARCH forecasting equation (5). This gives

E(h,,|9)=w(-1)+h,,

In this case the optimal variance forecast is simply the forecast of tomorrow’s variance,
adjusted for a drift component. This is important for our application because it implies that the
long-term forecast from the GARCH models will not revert to the unconditional variance. The
likelihood ratio test for a+ §=1 in the GARCH model is given in the row labelled LR;; in
Table II. This is distributed y{ under the null of IGARCH, and indicates that cocoa, silver, and
perhaps corn are IGARCH. For the other commodities, the long-horizon GARCH forecasts will
be very close to the unconditional variance. Another result of interest is that the ISD in the
combined model is highly significant for all commodities examined, suggesting that market
expectations can help to predict variances. The GARCH parameters tend to drop in magnitude
and significance, meaning that the ISD’s capture much of the same information that GARCH
does. This drop is most noticeable in . Still, the GARCH parameters (a and §) tend to remain

"The observation period used in estimating these models excluded the final eight weeks of our sample (40
observations) in order to facilitate out-of-sample forecasting later in this paper.
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Table II. GARCH and COMB model maximum likelihood estimates®

GARCH: h,= w + ag’_, + Bh,_,

COMB: h, = w+ a&’_, + Bh,_, + dc>_,

Vol. 14, Iss. No. 2

Parameter Cocoa Cotton Comn Gold Silver Sugar Wheat
GARCH o 0.069 0.908 0.063 0.062 0.332 0.361 0.799
model (2.22) (8.79) (2.12) (4.39) (8.75) (4.89) (7.13)
a 0.101 0.289 0.099 0.062 0.327 0.058 0.206
(6.75) (7.02) (4.13) (4.82) (11.86) (5.67) (5.12)
B 0.892 0.074 0.869 0.870 0.615 0.886 0.474
(57.50) (0.85) (24.95) (35.25) (28.68) (46.36) (6.77)
Q*(12)° 10.35 412 4.36 4.67 7.14 4.85 0.37
LR}, 0.46 5343 3.99 7.27 1.90 16.97 30.86
COMB @ -0.008 0.383 -0.030 0.185 -0.269 2.203 0.603
model (-0.12) (4.83)  (-1.16) (1.58)  (-3.30) (5.08) (3.92)
a 0.141 0.257 0.082 0.027 0.280 0.117 0.275
(6.32) (6.61) (3.37) (1.57) (6.36) (4.92) (4.39)
0.778 0.038 0.864 -0.369 0.178 0.020 0.0007
(17.64) (0.45) (24.60) (=3.02) (2.29) (0.16) .
d 5.11 14.67 2.307 33.71 25.11 16.76 24.39
(2.49) (6.48) (3.37) (7.20) (7.67) (5.60) (5.43)
Q*(12)° 10.01 5.28 3.78 5.84 4.65 3.61 0.45

* Asymptotic standard errors in parentheses.

*(*(12) is the Ljung—Box test for up to the twelth order serial correlaticn in the squared standardized residuals. It is
distributed x3, under the null of no serial correlation.

¢ LR, is the likelihood ratio test for the null of a + f=1. It is distributed x?2.

¢ Due to estimation problems, this parameter was set to zero.

significant, suggesting either a violation of options market efficiency or a misspecification of the
options-pricing equation. The significance of both the GARCH parameters and the ISD
parameters implies that the ISDs contain information about future volatility that is not captured
by the GARCH model, and the time series of volatility contains information about future
volatility that is not incorporated into the option price. This suggests that the COMB model,
which puts these two kinds of information into the same model, has the potential to be a
successful forecasting model.

For each commodity, the six different forecasts and the actual variance over a 225-day
forecast horizon are summarized in Table IIl. Each block of the table presents summary
statistics (average, minimum, maximum, and number of observations) for the actual and
forecasted variance for each of the different commodities studied.®? One observation from this
table is that the ISD-based forecasts tend to overstate true volatility (except for cocoa and
wheat). There are several explanations for this, two of which are stochastic interest rates and
stochastic volatility. For example, if the interest rate is stochastic then the ISD will capture both
asset price volatility and interest rate volatility, so the ISD will be overstated. However,

*In this table and the two which follow, the samples from which the statistics are computed do not include the final
eight weeks of data, which were withheld for out-of-sample comparisons. This explains part of the difference between
the number of observations listed in Table III and the number of days listed in Table I. The remaining difference is
caused by withholding the first 34 observations in order to enable computation of the HIST forecasts. Also, the ISD-
based forecasts have different numbers of observations because observations were dropped if the extracted ISD
implied that early exercise was optimal.
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Table III. Forecast summary statistics

ACTUAL ISDAT ISDAVG  1ISD1 HIST GARCH COMB

Cocoa avg 0.358 0.278 0.286 0.281 0.334 0.420 0.367
min 0.213 0.117 0.117 0.117 0.124 0.342 0.153
max 0.511 0.546 0.436 0413 0.654 0.708 0.545
nobs 77 770 770 765 777 777 771
Cotton avg 0.185 0.192 0.195 0.194 0.186 0.192 0.189
min 0.139 0.110 0.116 0.116 0.093 0.192 0.148
max 0.259 0412 0412 0412 0.384 0.205 0.239
nobs 890 883 883 774 890 890 890
Corn avg 0.190 0.232 0.237 0.231 0.208 0.222 0.210
min 0.136 0.163 0.169 0.130 0.090 0.210 0.085
max 0.238 0.355 0316 0314 0.724 0.297 0.403
nobs 532 528 528 504 532 232 532
Gold avg 0.148 0.168 0.171 0.169 0.144 0.154 0.148
min 0.112 0.129 0.137 0.099 0.081 0.151 0.113
max 0.215 0.326 0.266 0.267 0.280 0.170 0.275
nobs 913 906 906 869 913 913 913
Silver avg 0.253 0.272 0.270 0.270 0.263 0.378 0.274
min 0.155 0.171 0.185 0.141 0.110 0.368 0.132
max 0.468 0.604 0.790 0.506 0.738 0.604 0.694
nobs 205 899 899 816 905 905 905
Sugar avg 0.391 0.408 0.423 0.405 0.389 0.409 0.402
min 0.293 0.223 0.253 0.180 0.197 0.400 0.303
max 0.560 0.915 0.894 0.600 0.865 0.496 0.699
nobs 908 900 500 812 908 908 908
Wheat avg 0.239 0.218 0.221 0.219 0.229 0.255 0.255
min 0.114 0.110 0.110 0.110 0.084 0.254 0.187
max 0.360 0.478 0.504 0.484 0.593 0.312 0.586
nobs 920 913 913 913 920 920 920

Ramaswamy and Sunderesan (1985) show that using the actual term structure at each point in
time (as we do) eliminates much of the mispricing due to stochastic interest rates. Next, if
volatility is stochastic but the options pricing formula assumes it is constant, then this additional
source of uncertainty must be picked up by the ISDs, resulting in overstated ISDs. Another
observation from Table III is that the HIST forecast seems to be very accurate, on average. This
is surprising, given that it was constructed as the sample standard deviation over moving 7-week
windows, and the actual volatility is the sample standard deviation over the subsequent 225-day
window. However, as we will see below, having an average forecast error close to zero does not
necessarily make the historical volatility forecast a good forecast. In fact, the wide forecast
ranges from the HIST model (compared to the ranges of ACTUAL) are indicative of a poor
forecasting model. The second most accurate forecasts, on average, are the COMB forecasts,
suggesting that combining market expectations with time-series methodology might improve
forecasting ability. Another observation is that for some commodities (cotton, gold, and perhaps
wheat), the range of the GARCH forecasts is small, suggesting that the GARCH forecasts are
almost constant. This is to be expected for long-horizon forecasts if a + 8 is much less than one
(see equation (5)), as is the case for cotton and wheat.
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To illustrate the relationships among the various forecasts, Table IV presents the correlation
matrix for the comn forecasts. We see from this table that the correlations among the three ISD
forecasts are very high and all correlations with HIST are low. We should therefore not be
surprised if the ISD forecasts all perform similarly, while the HIST forecasts perform badly.

Many of these observations are evident in Figure 1, which presents the 225-day ISDAT,
HIST, GARCH and COMB forecasts for corn along with the actual 225-day volatility.® For
example, it is clear that ISDAT tends to overstate volatility and that the GARCH forecasts are
relatively stable. The HIST forecasts seem to have little relationship to the actual variance being
forecast, even though on average they might be close to the actual variance. The COMB

Table IV Correlation matrix for corn forecasts

ISDAT ISDAVG ISD1 HIST GARCH COMB

ISDAT 1.000 0.964 0.945 0.167 0.755 0.829
ISDAVG 1.000 0.968 0.155 0.738 0.816
ISD1 1.000 0.128 0.712 0.809
HIST 1.000 0.855 0.313
GARCH 1.000 0.741
COMB 1.000
ISDAT HIST
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Figure 1. Forecasts for corn

¥ We do not present graphs of ISDAVG and ISD1 because they are very similar to the ISDAT graph.
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forecasts seem to track the true volatility quite well, though the swings in the COMB forecast
are much larger than the swings in the realized volatility. In general, plots of the time-series
forecasts are much smoother than plots of the ISD forecasts. It appears that market expectations
of volatility are revised frequently, and often quite significantly.

We use mean squared forecast errors (MSFEs) to formally evaluate each of the forecasts.
Other metrics, like mean absolute forecast errors, gave virtually identical conclusions. Table V
shows the mean squared forecast errors for each of the forecasting models for each commodity.
It is clear from the table that, with the exception of silver, the GARCH and COMB models
dominate all the ISD forecasts and the historical volatility forecasts. GARCH in particular
forecasts well, having the smallest MSFE for four of the seven commodities and performing
second best in two other cases. This confirms the results of Lamoureux and Lastrapes (1993),
Day and Lewis (1992) and others, who find that GARCH-based forecasts outperform ISD
forecasts, and implies that the ISDs extracted from the Barone-Adesi and Whaley formula do
not give optimal forecasts of volatility. COMB has the smallest MSFE for two of the
commodities, and has the second smallest MSFE for three others. Therefore, models which
combine market information with time-series information should provide superior forecasts to
those which use just market information. Also, as anticipated from Table IV, the ISD forecasts
all perform similarly, and the HIST forecasts tend to perform the worst. It is not surprising that
the HIST forecasts perform so poorly, because of all the forecasts considered, HIST uses
information in the least efficient manner.

Though the results are not reported here in order to conserve space, one interesting result is
that the ISDs from options on futures contracts relatively near maturity (30-50 days to
maturity) provide long-run volatility forecasts that are similar in accuracy to those provided by
options on futures contracts that are far from maturity (225 days to maturity). It seems that there
are two offsetting effects here. The first effect is that the near to maturity options are more
heavily traded than the distant options and consequently are priced more precisely, implying a
more accurate ISD. But this effect is countered by the fact that the ISD from the near to maturity
option must be extrapolated to span the desired horizon, thus reducing its accuracy. In contrast,
using distant-horizon contracts eliminates the need for extrapolating, at the cost of using
infrequently traded (and consequently less accurately priced) options.

A true test of a model’s ability to forecast can only be accomplished through out-of-sample
forecasting. Therefore the 225-day forecasts from each of our six models were computed for
each day in the final eight weeks of each data set, using only data available up to but not

Table V. Mean squared forecast errors*—full sample

ISDAT ISDAVG 1SD1 HIST GARCH COMB

Cocoa 1.391 1.277 1.322 1.603 1.138° 0.938°
Cotton 0.152 0.168 0.173 0.382 0.144¢ 0.092°
Comn 0.251° 0.288 0.264 1.001 0.193° 0.271

Gold 0.177 0.193 0.196 0.181 0.086° 0.121°
Silver 0.615 0.573° 0.587¢ 1.161 2.370 0.801

Sugar 1.557 1.548 1.088 1.748 0.537° 0.716°
Wheat 0.896 0.945 0.916 1.840 0.470° 0.763°

*MSFEs were all multiplied by 100.
*Lowest MSFE for each commodity.
“Second lowest MSFE for each commodity.
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Table VII. Out-of-sample forecast evaluations

ISDAT ISDAVG ISD1 HIST GARCH COMB GR

Cocoa MSFE* - 0.311 0.300° 0.300° 1.958 2.788 1.927 1.170
MFE 0.050 0.049° 0.049° 0.134 0.162 0.138 0.107
Cotton MSFE’, 0.018 0.020 0.020 0.080 0.091 0.015° 0.012°
MFE 0.012 0.013 0.013 0.014 0.030 0.010° 0.008°
Corn MSFE* 0.196 0.261 0.209 0.335 0.399 0.090¢ 0.003*
MFE 0.043 0.050 0.045 0.052 0.062 -0.026" 0.000"
Gold MSFE? 0.227 0.216 0.219 0.414 0.007¢ 0.106 0.001°
MFE 0.047 0.046 0.046 0.061 0.007° 0.031 0.001°
Silver MSFE* 0.231 0.235 0.224° 0.363 0.831 0.145° 0.441
MFE —-0.047 -0.047 -0.046° -0.058 0.090 -0.035*  -0.066
Sugar MSFE* 1.283 0.716 0.936 0.374 0.295 0.239¢ 0.190°
MFE -0.106  -0.075 -0.093 0.003° 0.037 -0.026 0.017¢
Wheat MSFE* 0.065 0.065 0.062 0.055 0.120 0.011° 0.009°
MFE -0.024  -0.023 -0.023 0.006 0.035 -0.001°  —0.003°

* MSFEs were all multiplied by 100.
*Lowest MSFE or MFE for each commodity.
¢Second lowest MSFE or MFE for each commeodity.

have the lowest MFEs twice and the second-lowest twice. This confirms the in-sample results in
Table III, suggesting again that combining market-based forecasts with time-series forecasts
results in forecasts with lower bias than the original forecasts. In terms of mean squared
forecast error, the combined forecasts again perform exceptionally well. With the exception of
cocoa and silver, the GR forecast has the lowest out-of-sample mean squared forecast error.
For silver the COMB forecast has the lowest. Also, the COMB forecast has the second-lowest
MSEFE for four of the five commodities where GR has the lowest. The obvious conclusion is
that the two combined forecasts perform better than either the time-series forecasts or the
market-based forecasts. This result confirms the in-sample results in that the ISDs are still
comparatively poor predictors of volatility compared to models which combine market-based
information with time-series information. The success of the combined forecasts suggests that
much more precise interval forecasts can be made using the GR or COMB forecasts of variance.
Furthermore, since the GR and COMB forecasts clearly dominate the ISD forecasts, we
speculate that the difference between the combined forecasts and the ISD forecasts can be used
to identify mispriced options. The idea is that since expectations of future volatility play such a
critical role in the determination of options prices, better forecasts of volatility should lead to
better pricing and should therefore help an investor identify over- or under-priced options
contracts.

CONCLUSIONS

The results presented above are promising. They indicate that better forecasts of volatility are
available than can be obtained from market expectations or time-series models alone. In
particular, the COMB and GR forecasts, which combine market-based information with time-
series information, yield better forecasts than exist in the literature. Several implications of this
are immediately apparent. First, the history of the time series contains information about future
volatility that is not captured by market expectations. This suggests that options markets are
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unimportant, as indicated by the relatively low weights being applied to this forecast. The
negative weights which sometimes appear on the GARCH forecasts can be attributed to
multicollinearity with the constant. They all become positive when the constant term is omitted
from the regression.'? This linear combination of forecasts is guaranteed to provide within-
sample forecasts that are superior to any of the individual forecasts because it is chosen to
minimize within-sample mean squared forecast error. This suggests, but does not guarantee, that
it will perform better out-of-sample as well.
Therefore the final forecast, which we call GR, ;- (for Granger and Ramanathan), is

GR, 25 =70 + ) ISDAT, 55 + 7,HIST, 555 + $GARCH, 5,5 + 7,COMB, 5,5 (10)

where the $,’s come from the in-sample regression (9). See Figure 2 for a graph of the GR
forecast for corn. In this figure, the first 406 observations (through February 1990) were used to
construct the GR parameter estimates, meaning that this figure combines both in- and out-of-
sample forecasts. GR tracks the true volatility very well, increasing when actual volatility
increases and decreasing when actual volatility decreases. Unlike the COMB forecast, GR does
not overpredict high-volatility periods and underpredict low-volatility ones.

We now have seven forecasts of volatility. The first three (ISDAT, ISDAVG, and ISD1) are
market-based, the next two (HIST and GARCH) are time-series based, and the final two
(COMB and GR) combine the market- and time-series-based forecasts. The results of the out-
of-sample MSFEs and the mean forecast errors (MFEs) are presented in Table VII. In general,
the GR and COMB forecasts have the lowest MFEs. In fact, the GR forecasts have the lowest
MFEs for three commodities and the second-lowest for two others, and the COMB forecasts

GR
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0.3
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0.25 bt

> “ %
0.15 -
/v-
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Standard deviation

0.1
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880822 890120 890616 891110 900416 900910

881103 890405 890829 900131 900627 901123

Date
Figure 2. GR forecasts for corn

12 None of the conclusions of this paper are changed if the constant term is dropped from this regression.
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including the final eight weeks. This gives us a time series of 40 out-of-sample forecasts from
each forecasting method,*° for each commodity.

One additional forecast was prepared for the out-of-sample testing, which can be viewed as
an alternative way of combining market-based forecasts (ISDs) and time-series based forecasts
(GARCH and HIST). Granger and Ramanathan (1984) argue that if a set of forecasts exists
which are based either on different information sets or on the same information set but
constructed differently, then a better forecast can be obtained by combining the existing
forecasts. In our situation, we have forecasts which are constructed from different information
sets (e.g. the GARCH forecasts are based on historical information and the ISD forecasts, on
current market expectations), as well as forecasts constructed from the same information set but
constructed differently (e.g. the HIST forecasts and the GARCH forecasts are both based strictly
on historical information, but the forecasts are constructed differently). Therefore, combining
these forecasts has the potential to generate an improved forecast.

One method of combining these forecasts, suggested by Granger and Ramanathan (1984), is
to regress the true volatility on the set of forecasts to obtain weights, then weight all future
forecasts by the weights obtained in this preliminary regression. To construct this combined
forecast, we withheld 200 observations from the end of our data sets'' and re-estimated all the
models. We then ran the regression

ACTUAL, 555 = ¥y + 71 ISDAT, 555 + ¥,HIST, 395 + 73GARCH, 355 + y,COMB, 5,5 + ¢, €))

to obtain the weights on the forecasts. We did not include ISDAVG and ISD1 in the regression
because they are highly collinear with ISDAT (see Table IV), and would therefore add little
forecasting power. Table VI presents the parameter estimates from equation (9) for each
commodity. Notice that for four of the seven commodities, the COMB forecast gets the highest
(positive) weight, suggesting that the GR forecasts are based more heavily on the COMB
forecasts than the market-based ISD forecasts. Not surprisingly, the HIST forecasts tend to be

Table VI. Granger/Ramanathan OLS parameter estimates—restricted sample
ACTUAL, 555 = ¥ + ¥, ISDAT, 555 + ¥, HIST, 35 + ¥aGARCH, 255 + 74COMB, 55

Constant ISDAT HIST GARCH COMB
Cocoa 0.181 0.338° 0.032 0.349° -0.165
Cotton -0.154 -0.00.0 —-0.083 0.726° 1.106*
Com 0.225 0.333° -0.015 -0.719* 0.255
Gold 0.227 -0.170 0.087 -0.922° 0.409"
Silver 0.058 0.516* 0.255° -0.036 -0.022
Sugar 0319 -0.128° 0.023 -0.004 0.310°
Wheat 0.173 -0.198 -0.333 0.344° 0.430°

*Largest parameter in absolute value for each commodity.
®Second largest parameter in absolute value for each commodity.

! The GARCH and COMB model parameters are not re-estimated as the 225-day forecast horizon moves through the
40-day window. This biases the results against these two models since their results are only conditioned on the in-
sample data and none of the out-of-sample data were used to update the model parameters.

' In order to compute the true volatility, we need 225 calendar days of returns, which translates into 160 working days,
or 160 observations. Therefore, in order to make the Granger and Ramanathan forecasts truly out of sample we need to
withold 160 observations plus the 40 observations from the out-of-sample forecasting period, for 200 observations.
Otherwise, the dependent variable in the Granger and Ramanathan regression would include some out-of-sample data.
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inefficient and/or the option-pricing formula we used is incorrect. This implies it is possible
that our volatility forecast can be used to identify mispriced options, and a profitable trading
rule could be established based on the difference between the ISD and the COMB or GR
volatility forecast. Second, our forecasting method can be used to obtain interval forecasts of
commodity prices, which should be beneficial to market participants who are concerned about
the precision of a point forecast, or to policy makers whose policies will depend on volatility
forecasts. One final note is that the accurate matching of the forecast horizon and the time to
maturity of the futures contract is relatively unimportant. Our results indicate that near to
maturity options tend to forecast long-run volatility about as well as options that are far from
maturity.

APPENDIX

Suppose that the underlying futures price follows the stochastic differential equation
dF|F=Cdt+odz (A1)

where F is the commodity futures price, { is the instantaneous expected relative price change of
the commodity, o is the instantaneous standard deviation, ¢ is time, and z is a Wiener process.
Then if the interest rate r is constant and no arbitrage opportunities exist, Black (1976) shows
that the price of a commodity futures option, C, must follow the partial differential equation
30°F*Cpp—rC+C,=0 (A2)

where subscripts represent partial derivatives of the variable with respect to the subscript. For a
European option with no early exercise privilege, the boundary condition requires that the
maturity value of the option be equal to max{0, Fr— X}, where F; is the future price at
maturity and X is the exercise price. This boundary condition is applied to equation (A2) to get
Black’s European commodity futures option pricing formula
c(F,, T, r, X, 0)=e"T[FN(d,) - XN(d,)] (A3)
where T is time to maturity, N(-) is the cuamulative normal distribution, and
d, =[n(F,/X) +1To?16\T
dy=d, - N\T
However, when early exercise is possible, the American option boundary conditions must be
used, and a closed form solution no longer exists. Barone-Adesi and Whaley (1987) propose an
approximate solution to this problem. Without going into the details of their derivation, define
Ay =(F'[g){1-e""N(d)}
d; =[n(F*'|X)+30*T1/NT
g, =[1+V1+8r/(c*K)]/2
K=1-e"7
where F" is the futures price that satisfies
F'-X=c(F',T,r,X,0)+{1-e""N(d))}F'|q,

and c(-) is Black’s theoretical call price in equation (A3) above. Then the approximate formula
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for the price of an American commodity futures call option at time ¢, C(F,, T, r, X, o), is

x\ 0

F-X if ,=F"
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